Journal of Molecular Evolution

, Volume 61, Issue 2, pp 253–263 | Cite as

The Promise and Peril of Continuous In Vitro Evolution

  • Glenn C. Johns
  • Gerald F. JoyceEmail author


Experimental evolution methods can be used to address and illuminate issues central to the understanding of evolutionary theory. One of the most powerful of these methods involves the in vitro evolution of nucleic acid enzymes, taking advantage of the direct relationship between the genotype of a nucleic acid sequence and the phenotype of its associated catalytic function. This review and commentary focuses on the past, present, and future potential of systems for the continuous in vitro evolution of nucleic acid enzymes as tools for modeling evolutionary processes in biology. It offers a candid appraisal of both the strengths and the limitations of these systems.


Continuous evolution In vitro evolution Isothermal amplification Ligase Mutation Ribozyme Selection 



This work was supported by Grant NAG5-9386 from the National Aeronautics and Space Administration and The Skaggs Institute for Chemical Biology.


  1. Bartel, DP, Szostak, JW 1993Isolation of new ribozymes from a large pool of random sequencesScience26114111418PubMedGoogle Scholar
  2. Beaudry, AA, Joyce, GF 1992Directed evolution of an RNA enzymeScience257635641PubMedGoogle Scholar
  3. Bergman, NH, Johnston, WK, Bartel, DP 2000Kinetic framework for ligation by an efficient RNA ligase ribozymeBiochemistry3931153123CrossRefPubMedGoogle Scholar
  4. Breaker, RR, Joyce, GF 1994Emergence of a replicating species from an in vitro RNA evolution reactionProc Natl Acad Sci USA9160936097PubMedGoogle Scholar
  5. Bull, JJ, Pease, CM 1995Why is the polymerase chain reaction resistant to in vitro evolutionJ Mol Evol4111601164CrossRefGoogle Scholar
  6. Compton, J 1991Nucleic acid sequence-based amplificationNature3509192CrossRefPubMedGoogle Scholar
  7. Eigen, M 1971Selforganization of matter and the evolution of biological macromoleculesNaturwissenschaften58465523CrossRefPubMedGoogle Scholar
  8. Ekland, EH, Szostak, JW, Bartel, DP 1995Structurally complex and highly active RNA ligases derived from random RNA sequencesScience269364370PubMedGoogle Scholar
  9. Ellinger, T, Ehricht, R, McCaskill, JS 1998In vitro evolution of molecular cooperation in CATCH, a cooperatively coupled amplification systemChem Biol5729741CrossRefPubMedGoogle Scholar
  10. Gould, SJ, Vrba, ES 1982Exaptation—A missing term in the science of formPaleobiology8415Google Scholar
  11. Guatelli, JC, Whitfield, KM, Kwoh, DY, Barringer, KJ, Richman, DD, Gingeras, TR 1990Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replicationProc Natl Acad Sci USA8718741878PubMedGoogle Scholar
  12. Hanczyc, MM, Dorit, RL 2000Replicability and recurrence in the experimental evolution of a group I ribozymeMol Biol Evol1710501060PubMedGoogle Scholar
  13. Hill CS (1996) Gen-Probe transcription mediated amplification: system principles. Gen-Probe Inc. technical document. Available at:
  14. Imburgio, D, Rong, M, Ma, K, McAllister, WT 2000Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variantsBiochemistry391041910430CrossRefPubMedGoogle Scholar
  15. Joyce, GF 2004Directed evolution of nucleic acid enzymesAnnu Rev Biochem73791836CrossRefPubMedGoogle Scholar
  16. Kühne, H, Joyce, GF 2003Continuous in vitro evolution of ribozymes that operate under conditions of extreme pHJ Mol Evol5717CrossRefPubMedGoogle Scholar
  17. Lehman, N 2004Assessing the likelihood of recurrence during RNA evolution in vitroArtif Life10122CrossRefPubMedGoogle Scholar
  18. Levisohn, R, Spiegelman, S 1969Further extracellular Darwinian experiments with replicating RNA molecules; diverse variants isolated under different selective conditionsProc Natl Acad Sci USA63805811PubMedGoogle Scholar
  19. McGinness, KE, Wright, MC, Joyce, GF 2002Continuous in vitro evolution of a ribozyme that catalyzes three successive nucleotidyl addition reactionsChem Biol9585596CrossRefPubMedGoogle Scholar
  20. Mills, DR, Peterson, RL, Spiegelman, S 1967An extracellular Darwinian experiment with a self-duplicating nucleic acid moleculeProc Natl Acad Sci USA58217224PubMedGoogle Scholar
  21. Mörl, M, Niemer, I, Schmeizer, C 1992New reactions catalyzed by a group II intron ribozyme with RNA and DNA substratesCell70803810CrossRefPubMedGoogle Scholar
  22. Mullis, KB, Faloona, FA 1987Specific synthesis of DNA in vitro via a polymerase catalyzed chain reactionMethods Enzymol155335350PubMedGoogle Scholar
  23. Ordoukhanian, P, Joyce, OF 1999A molecular description of the evolution of resistanceChem Biol6881889CrossRefPubMedGoogle Scholar
  24. Saffhill, R, Schneider-Bernloehr, H, Orgel, LE 1970In vitro selection of bacteriophage Qβ ribonucleic acid variants resistant to ethidium bromideJ Mol Biol51531539CrossRefPubMedGoogle Scholar
  25. Saiki, RK, Scharf, S, Faloona, F, Mullis, KB, Horn, GT, Erlich, HA, Arnheim, N 1985Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemiaScience 2301350–1354Google Scholar
  26. Schmitt, T, Lehman, N 1999Non-unity in molecular heritability demonstrated by continuous evolution in vitroChem Biol6857869CrossRefPubMedGoogle Scholar
  27. Tawfik, DS, Griffiths, AD 1998Man-made cell-like compartments for molecular evolutionNature Biotechnol16652656CrossRefGoogle Scholar
  28. Wlotzka, B, McCaskill, JS 1997A molecular predator and its prey: coupled isothermal amplification of nucleic acidsChem Biol42533CrossRefPubMedGoogle Scholar
  29. Wright, MC, Joyce, GF 1997Continuous in vitro evolution of catalytic functionScience276614617CrossRefPubMedGoogle Scholar
  30. Wright, S 1931Evolution in Mendelian populationsGenetics1697159Google Scholar
  31. Wright, S 1932The roles of mutation, inbreeding, crossbreeding, and selection in evolutionProc 6th Int Congr Genet1356366Google Scholar
  32. Wright, S 1982The shifting balance theory and macroevolutionAnnu Rev Genet16119CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Departments of Chemistry and Molecular Biology and the Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations