Journal of Molecular Evolution

, Volume 62, Issue 2, pp 143–157 | Cite as

A “Green” Phosphoribulokinase in Complex Algae with Red Plastids: Evidence for a Single Secondary Endosymbiosis Leading to Haptophytes, Cryptophytes, Heterokonts, and Dinoflagellates

  • Jörn PetersenEmail author
  • René Teich
  • Henner Brinkmann
  • Rüdiger Cerff


Phosphoribulokinase (PRK) is an essential enzyme of photosynthetic eukaryotes which is active in the plastid-located Calvin cycle and regenerates the substrate for ribulose-bisphosphate carboxylase/oxygenase (Rubisco). Rhodophytes and chlorophytes (red and green algae) recruited their nuclear-encoded PRK from the cyanobacterial ancestor of plastids. The plastids of these organisms can be traced back to a single primary endosymbiosis, whereas, for example, haptophytes, dinoflagellates, and euglenophytes obtained their “complex” plastids through secondary endosymbioses, comprising the engulfment of a unicellular red or green alga by a eukaryotic host cell. We have cloned eight new PRK sequences from complex algae as well as a rhodophyte in order to investigate their evolutionary origin. All available PRK sequences were used for phylogenetic analyses and the significance of alternative topologies was estimated by the approximately unbiased test. Our analyses led to several astonishing findings. First, the close relationship of PRK genes of haptophytes, heterokontophytes, cryptophytes, and dinophytes (complex red lineage) supports a monophyletic origin of their sequences and hence their plastids. Second, based on PRK genes the complex red lineage forms a highly supported assemblage together with chlorophytes and land plants, to the exclusion of the rhodophytes. This green affinity is in striking contrast to the expected red algal origin and our analyses suggest that the PRK gene was acquired once via lateral transfer from a green alga. Third, surprisingly the complex green lineages leading to Bigelowiella and Euglena probably also obtained their PRK genes via lateral gene transfers from a red alga and a complex alga with red plastids, respectively.


Secondary endosymbiosis Gene transfer Plastid Nuclear genes Calvin cycle Phosphoribulokinase Complex algae Red algae 



We thank Woodland Hastings (Harvard) for the cDNA libraries from Pyrocystis lunula and Lingulodinium polyedrum, William Martin (Düsseldorf) for the cDNA library from Euglena gracilis, Geoff McFadden (Melbourne) for provision of genomic DNA from Bigelowiella natans, Sarina Scharbatke (Hannover) for excellent technical assistance, and Carina Grau-vogel for critical discussions. We are grateful to Naiara Rodriguez-Ezpeleta for helpful comments on an earlier version of the manuscript. The associate editor and four anonymous reviewers provided very helpful suggestions. Major financial support, including a Ph.D. stipend for R.T., was received from the Deutsche Forschungsgemeinschaft (CE 1/27-1).

Supplementary material

supp.pdf (137 kb)
Supplementary material


  1. Archibald J, Rogers M, Toop M, Ishida K, Keeling P (2003) Lateral gene transfer and the evolution of plastid–targeted proteins in the secondary plastid-containing alga Bigelowiella natans Proc Natl Acad Sci USA 100:7678–7683PubMedGoogle Scholar
  2. Bachvaroff TR, Concepcion GT, Rogers CR, Herman EM, Delwiche CF (2004) Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome Protist 155:65–78CrossRefPubMedGoogle Scholar
  3. Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P, Durufle L, Gaasterland T, Lopez P, Muller M, Philippe H (2002) The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba Proc Natl Acad Sci USA 99:1414–1419CrossRefPubMedGoogle Scholar
  4. Bhattacharya D, Helmchen T, Melkonian M (1995) Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphina and the Chlorarachniophyta J Eukaryot Microbiol 42:65–69PubMedGoogle Scholar
  5. Brinkmann H, Philippe H (1999) Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies Mol Biol Evol 16:817–825PubMedGoogle Scholar
  6. Cai X, Fuller AL, McDougald LR, Zhu G (2003) Apicoplast genome of the coccidian Eimeria tenella Gene 321:39–46CrossRefPubMedGoogle Scholar
  7. Calvin M, (1956) The photosynthetic carbon cycle J Chem Soc 1956:1895–1915Google Scholar
  8. Cavalier-Smith T (1986) The kingdom Chromista: origin and systematics. In: Round FE, Chapman DJ (eds) Progress in phycological research, Vol 4. Biopress, Bristol, UK, pp 309–347Google Scholar
  9. Cavalier-Smith T, (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree J Euk Microbiol 46:347–366Google Scholar
  10. Daugbjerg N, Andersen R (1997) Phylogenetic analyses of the rbcL sequences from haptophytes and heterokont algae suggest their chloroplasts are unrelated Mol Biol Evol 14:1242–1251PubMedGoogle Scholar
  11. Delwiche C, (1999) Tracing the thread of plastid diversity through the tapestry of life Am Nat 154:S164–S177CrossRefPubMedGoogle Scholar
  12. Delwiche C, Palmer J (1997) The origin of plastids and their spread via secondary symbiosis. In: Bhattacharya D (ed) Origins of algae and their plastids. Springer Verlag, Wien, pp 53–86Google Scholar
  13. Dooijes D, Chaves I, Kieft R, Martin W, Borst P (2000) Base J originally found in kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis Nucleic Acid Res 28:3017–3021PubMedGoogle Scholar
  14. Doolittle WF, (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes Trends Genet 14:307–311PubMedGoogle Scholar
  15. Douglas S, (1998) Plastid evolution: origins, diversity, trends Curr Opin Genet Dev 8:655–661CrossRefPubMedGoogle Scholar
  16. Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus Nature 410:1091–1096CrossRefPubMedGoogle Scholar
  17. Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR (1999) A phylogentic assessment of plastids and eukaryotic light–harvesting antenna proteins J Mol Evol 48:59–68CrossRefPubMedGoogle Scholar
  18. Fagan T, Hastings W, Morse D (1998) Phylogeny of glyceraldehyde-3-phosphate dehydrogenase indicates lateral transfer from cryptomonads to dinoflagellates J Mol Evol 47:633–639CrossRefPubMedGoogle Scholar
  19. Fast N, Kissinger J, Roos D, Keeling P (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids Mol Biol Evol 18:418–426PubMedGoogle Scholar
  20. Felsenstein J, (1978) Cases in which parsimony and compatibility methods will be positively misleading Syst Zool 27:401–410Google Scholar
  21. Figge RM, Schubert M, Brinkmann H, Cerff R (1999) Glyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: evidence for intra- and inter-kingdom gene transfer Mol Biol Evol 16:429–440PubMedGoogle Scholar
  22. Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King M, Gonzalez-Halphen D (2002) A green algal apicoplast ancestor Science 298:2155CrossRefPubMedGoogle Scholar
  23. Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King M, Gonzalez-Halphen D (2003) Response to comment on “A Green Algal Apicoplast Ancestor” Science 301:49CrossRefGoogle Scholar
  24. Gascuel O, (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data Mol Biol Evol 14:685–695PubMedGoogle Scholar
  25. Gilson PR, McFadden GI (1997) Good things in small packages: the tiny genomes of chlorarachniophyte endosymbionts Bioessays 19:167–173CrossRefPubMedGoogle Scholar
  26. Gray MW, Lang BF, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Brossard N, Delage E, Littlejohn TG, Plante I, Rioux P, Saint-Louis D, Zhu Y, Burger G (1998) Genome structure and gene content in protist mitochondrial DNAs Nucleic Acids Res 26:865–878CrossRefPubMedGoogle Scholar
  27. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  28. Hackett JD, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Nosenko T, Bhattacharya D (2004) Migration of the plastid genome to the nucleus in a peridinin dinoflagellate Curr Biol 14:213–218CrossRefPubMedGoogle Scholar
  29. Harper J, Keeling P (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids Mol Biol Evol 20:1730–1735PubMedGoogle Scholar
  30. Harrison D, Runquist J, Holub A, Miziorko H (1998) The crystal structure of phosphoribulokinase from Rhodobacter sphaeroides reveals a fold similar to that of adenylate kinase Biochemistry 37:5074–5085CrossRefPubMedGoogle Scholar
  31. Häuber MM, Müller SB, Speth V, Maier UG (1994) How to evolve a complex plastid? – A hypothesis Bot Acta 107:383–386Google Scholar
  32. Henze K, Badr A, Wettern M, Cerff R, Martin W (1995) A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution Proc Natl Acad Sci USA 92:9122–9126PubMedGoogle Scholar
  33. Horsnell P, Raines C (1991) Nucleotide sequence of a cDNA clone encoding chloroplast phosphoribulokinase from Arabidopsis thaliana Plant Mol Biol 17:183–184PubMedGoogle Scholar
  34. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  35. Inagaki Y, Simpson A, Dacks J, Roger A (2004) Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study Syst Biol 53:582–593CrossRefPubMedGoogle Scholar
  36. Ishida K, Cao Y, Hasegawa M, Okada N, Hara Y (1997) The origin of chlorarachniophyte plastids, as inferred from phylogenetic comparisons of amino acid sequences of EF-Tu J Mol Evol 45:682–768CrossRefPubMedGoogle Scholar
  37. Ishida K, Green BR, Cavalier-Smith T (1999) Diversification of a chimaeric algal group, the Chlorachniophytes: Phylogeny of nuclear and nucleomorph small-subunit rRNA genes Mol Biol Evol 16:321–331Google Scholar
  38. Kersanach R, Brinkmann H, Liaud MF, Zhang DX, Martin W, Cerff R (1994) Five identical intron positions in ancient duplicated genes of eubacterial origin Nature 367:387–389CrossRefPubMedGoogle Scholar
  39. Kies L, Kremer B (1990) Phylum Glaucocystophyta. In: Margulis L, Corliss J, Melkonian M, Chapman D (eds) Handbook of Protoctista. Jones & Bartlett, Boston, pp 152–166Google Scholar
  40. Köhler S, Delwiche C, Denny P, Tilney L, Webster P, Wilson R, Palmer J, Roos D (1997) A plastid of probable green algal origin in apicomplexan parasites Science 275:1485–1489PubMedGoogle Scholar
  41. Leister D, Schneider A (2004) Evolutionary contribution of plastid genes to plant nuclear genomes and its effects on composition of the proteomes of all cellular compartments. In: Hirt RP, Horner DS (eds) Organelle, genomes and eukaryote phylogeny: An evolutionary synthesis in the age of genomics. Systematics Association Special Vol 68. CRC Press, Boca Raton, FL, pp 237–255Google Scholar
  42. Liaud M, Brandt U, Scherzinger M, Cerff R (1997) Evolutionary origin of cryptomonad microalgae: two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components J Mol Evol 44(Suppl 1):S28–S37PubMedGoogle Scholar
  43. Liaud M, Lichtle C, Apt K, Martin W, Cerff R (2000) Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway Mol Biol Evol 7:213–223Google Scholar
  44. Long M, Cerff R (2003) Introns: Movements. In: Cooper D (ed) Nature encyclopedia of the human genome. Nature, Maximilian, pp 547–551Google Scholar
  45. Martin W, Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis Curr Genet 32:1–18CrossRefPubMedGoogle Scholar
  46. Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiol 118:9–17PubMedGoogle Scholar
  47. Martin W, Stoebe B, Goremykin V, Hapsmann S, Hasegawa M, Kowallik K (1998) Gene transfer to the nucleus and the evolution of chloroplasts Nature 393:162–165PubMedGoogle Scholar
  48. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus Proc Natl Acad Sci USA 99:12246–12251PubMedGoogle Scholar
  49. Maslov D, Yasuhira S, Simpson L (1999) Phylogentic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences Protist 150:33–42PubMedGoogle Scholar
  50. McFadden GI, Gilson PR, Hofmann CJ, Adcock GJ, Maier UG (1994) Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga Proc Natl Acad Sci USA 91:3690–3694PubMedGoogle Scholar
  51. McFadden GI, Gilson PR, Waller RF (1995) Molecular phylogeny of Chlorarachniophytes based on plastid rRNA and rbcL sequences Arch Protistenkd 145:231–239Google Scholar
  52. McFadden GI, Gilson PR, Hofman CJ (1997) Division Chlorarachniophyta. In: Bhattacharya D (ed) Origins of algae and their plastids. Springer Verlag, Wien, pp 175–185Google Scholar
  53. Medlin LK, Kooistra WG, Potter D, Saunders GW, Andersen RA (1997) Phylogenetic relationships of the “golden algae” (haptophytes, heterokont chromophytes) and their plastids. In: Bhattacharya D (ed) Origins of algae and their plastids. Springer Verlag, Wien, pp 187–219Google Scholar
  54. Meyer-Gauen G, Herbrand H, Pahnke J, Cerff R, Martin W (1998) Gene structure, expression in Escherichia coli and biochemical properties of the NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Pinus sylvestris chloroplasts Gene 209:167–174CrossRefPubMedGoogle Scholar
  55. Milanez S, Mural R (1988) Cloning and sequencing of cDNA encoding the mature form of phosphoribulokinase from spinach Gene 66:55–63CrossRefPubMedGoogle Scholar
  56. Morse D, Salois P, Markovic P, Hastings JW (1995) A nuclear-encoded form II RuBisCO in dinoflagellates Science 268:1622–1624PubMedGoogle Scholar
  57. Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa M, Shin-i T, Kohara Y, Ogasawara N, Kuroiwa T (2003) The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids J Mol Evol 56:485–497CrossRefPubMedGoogle Scholar
  58. Patron NJ, Rogers MB, Keeling PJ (2004) Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates Eukaryot Cell 3:1169–1175CrossRefPubMedGoogle Scholar
  59. Petersen J, Brinkmann H, Cerff R (2003) Origin, evolution, and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plant plastids J Mol Evol 57:16–26CrossRefPubMedGoogle Scholar
  60. Philippe H, (1993) MUST, a computer package of management utilities for sequences and trees Nucleic Acids Res 2:5264–5272Google Scholar
  61. Philippe H, Lopez P, Brinkmann H, Budin K, Germot A, Laurent J, Moreira D, Muller M, Le Guyader H (2000) Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions Proc R Soc Lond B Biol Sci 267:1213–1221Google Scholar
  62. Raines C, Longstaff M, Lloyd J, Dyer T (1989) Complete coding sequence of wheat phosphoribulokinase: developmental and light-dependent expression of the mRNA Mol Gen Genet 220:43–48PubMedGoogle Scholar
  63. Roesler KR, Ogren WL (1990) Primary structure of Chlamydomonas reinhardtii ribulose 1,5-bisphosphate carboxylase/oxygenase activase and evidence for a single polypeptide Plant Physiol 93:188–193Google Scholar
  64. Rogers M, Keeling PJ (2004) Lateral transfer and recompartmentalization of Calvin cycle enzymes of plants and algae J Mol Evol 58:367–375CrossRefPubMedGoogle Scholar
  65. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. 2nd ed. Cold Spring Habor Laboratory Press, Cold Spring Habor, NYGoogle Scholar
  66. Sanchez Puerta MV, Bachvaroff TR, Delwiche CF (2004) The complete mitochondrial genome sequence of the haptophyte Emiliania huxleyi and its relation to heterokonts DNA Res 11:1–10PubMedGoogle Scholar
  67. Schlösser UG, (1994) SAG–Sammlung von Algenkulturen at the University of Göttingen. Catalogue of Strains 1994 Bot Acta 107:113–186Google Scholar
  68. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing Bioinformatics 18:502–504CrossRefPubMedGoogle Scholar
  69. Schwarz-Sommer ZS, Shepherd N, Tacke E, Gierl A, Rohde W, Leclerc L, Mattes M, Berndtgen R, Petersen PA, Saedler H (1987) Influence of transposable elements on the structure and function of the A1 gene of Zea mays EMBO J 6:287–294PubMedGoogle Scholar
  70. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection Bioinformatics 17:1246–1247CrossRefPubMedGoogle Scholar
  71. Stoebe B, Kowallik K (1999) Gene-cluster analysis in chloroplast genomics Trends Genet 15:344–347CrossRefPubMedGoogle Scholar
  72. Swofford DL (1999) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  73. Takishita K, Ishida K, Maruyama T (2003) An enigmatic GAPDH gene in the symbiotic dinoflagellate genus Symbiodinium and its related species (the order Suessiales): possible lateral gene transfer between two eukaryotic algae, dinoflagellate and euglenophyte Protist 154:443–454CrossRefPubMedGoogle Scholar
  74. Takishita K, Ishida K, Maruyama T (2004) Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates Protist 155:447–458CrossRefPubMedGoogle Scholar
  75. Tengs T, Dahlberg O, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche C, Jakobsen K (2000) Phylogenetic analyses indicate that the 19’hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin Mol Biol Evol 17:718–729PubMedGoogle Scholar
  76. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  77. Van de Peer Y, De Wachter R (1997) Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA J Mol Evol 45:619–630PubMedGoogle Scholar
  78. Van de Peer Y, Rensing SA, Maier UG, De Wachter R (1996) Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae Proc Natl Acad Sci USA 93:7732–7726PubMedGoogle Scholar
  79. Van de Peer Y, Baldauf SL, Doolittle WF, Meyer A (2000) An updated and comprehensive rRNA phylogeny of (crown) eukaryotes based on rate-calibrated evolutionary distances J Mol Evol 51:565–576PubMedGoogle Scholar
  80. Waller RF, Keeling PJ, van Dooren GG, McFadden GI (2003) Comment on “A Green Algal Apicoplast Ancestor” Science 301:49aCrossRefGoogle Scholar
  81. Yang Z, (1997) PAML: a program for package for phylogenetic analysis by maximum likelihood CABIOS 15:555–556Google Scholar
  82. Yoon HS, Hackett JD, Bhattacharya D (2002a) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis Proc Natl Acad Sci USA 99:11724–11729Google Scholar
  83. Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002b) The single, ancient origin of chromist plastids Proc Natl Acad Sci USA 99:15507–15512Google Scholar
  84. Zhang Z, Green BR, Cavalier–Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes Nature 400:155PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Jörn Petersen
    • 1
    Email author
  • René Teich
    • 1
  • Henner Brinkmann
    • 2
  • Rüdiger Cerff
    • 1
  1. 1.Institut für GenetikTechnische Universität BraunschweigGermany
  2. 2.Département de BiochimieUniversité de Montréal C.P. 6128MontréalCanada

Personalised recommendations