Journal of Molecular Evolution

, Volume 61, Issue 6, pp 742–757 | Cite as

Evolutionary Relationships and Protein Domain Architecture in an Expanded Calpain Superfamily in Kinetoplastid Parasites

  • Klaus ErsfeldEmail author
  • Helen Barraclough
  • Keith Gull


Employing whole-genome analysis we have characterized a large family of genes coding for calpain-related proteins in three kinetoplastid parasites. We have defined a total of 18 calpain-like sequences in Trypanosoma brucei, 27 in Leishmania major, and 24 in Trypanosoma cruzi. Sequence characterization revealed a well-conserved protease domain in most proteins, although residues critical for catalytic activity were frequently altered. Many of the proteins contain a novel N-terminal sequence motif unique to kinetoplastids. Furthermore, 24 of the sequences contain N-terminal fatty acid acylation motifs indicating association of these proteins with intracellular membranes. This extended family of proteins also includes a group of sequences that completely lack a protease domain but is specifically related to other kinetoplastid calpain-related proteins by a highly conserved N-terminal domain and by genomic organization. All sequences lack the C-terminal calmodulin-related calcium-binding domain typical of most mammalian calpains. Our analysis emphasizes the highly modular structure of calpains and calpain-like proteins, suggesting that they are involved in diverse cellular functions. The discovery of this surprisingly large family of calpain-like proteins in lower eukaryotes that combines novel and conserved sequence modules contributes to our understanding of the evolution of this abundant protein family.


Calpain Trypanosoma Leishmania Parasites Genome Multigene family Protein domains Microtubules Cytoskeleton Acylation 



We thank David Lunt (Hull University) for constructive discussions concerning phylogenetic analysis and Robin Allaby (Astra Zeneca) for help during the initial phase of this project. This work was funded by a Wellcome Trust Programme Grant to K.G. and a University of Hull Start-Up Grant to K.E. Kinetoplastid genomic data were accessed via Most of the genomic data were provided by the Wellcome Trust Sanger Institute and The Institute for Genomic Research (TIGR), which are supported by the Wellcome Trust and the National Institutes of Health, USA (Grant AI043062), respectively.

Supplementary material

supp.pdf (3.5 mb)
Supplementary material


  1. Barnes TM, Hodgkin J (1996) The tra–3 sex determination gene of Caenorhabditis elegans encodes a member of the calpain regulatory protease family. EMBO J 15:4477–4484PubMedGoogle Scholar
  2. Bartlett GJ, Borkakoti N, Thornton JM (2003) Catalysing new reactions during evolution: economy of residues and mechanism. J Mol Biol 331:829–860PubMedCrossRefGoogle Scholar
  3. Berti PJ, Storer AC (1995) Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol 246:273–283PubMedCrossRefGoogle Scholar
  4. Beverley SM (2003) Protozomics: trypanosomatid parasite genetics comes of age. Nat Rev Genet 4:11–19PubMedCrossRefGoogle Scholar
  5. Bhatt A, Kaverina I, Otey C, Huttenlocher A (2002) Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain. J Cell Sci 115:3415–3425PubMedGoogle Scholar
  6. Bourgeau G, Lapointe H, Peloquin P, Mayrand D (1992) Cloning, expression, and sequencing of a protease gene (tpr) from Porphyromonas gingivalis W83 in Escherichia coli. Infect Immun 60:3186–3192PubMedGoogle Scholar
  7. Boutin JA (1997) Myristoylation. Cell Signal 9:15–35PubMedCrossRefGoogle Scholar
  8. Bringaud F, Vedrenne C, Cuvillier A, Parzy D, Baltz D, Tetaud E, Pays E, Venegas J, Merlin G, Baltz T (1998) Conserved organization of genes in trypanosomatids. Mol Biochem Parasitol 94:249–264PubMedCrossRefGoogle Scholar
  9. Burn P, Burger MM (1987) The cytoskeletal protein vinculin contains transformation-sensitive, covalently bound lipid. Science 235:476–479PubMedGoogle Scholar
  10. Cox FEG, Kreier JP, Wakelin D (1998) Parasitology. In: Collier L, Balows A, Sussman M (eds) Topley & Wilson’s microbiology and microbial infections. Arnold, LondonGoogle Scholar
  11. de Meeus T, Renaud F (2002) Parasites within the new phylogeny of eukaryotes. Trends Parasitol 18:247–251PubMedGoogle Scholar
  12. Dear N, Matena K, Vingron M, Boehm T (1997) A new subfamily of vertebrate calpains lacking a calmodulin-like domain: implications for calpain regulation and evolution. Genomics 45:175–184PubMedCrossRefGoogle Scholar
  13. Dear TN, Boehm T (1999) Diverse mRNA expression patterns of the mouse calpain genes Capn5, Capn6 and Capn11 during development. Mech Dev 89:201–209PubMedCrossRefGoogle Scholar
  14. Denison SH, Orejas M, Arst HN Jr (1995) Signaling of ambient pH in Aspergillus involves a cysteine protease. J Biol Chem 270:28519–28522PubMedGoogle Scholar
  15. Devedjiev Y, Popov A, Atanasov B, Bartunik HD (1997) X-ray structure at 1.76 A resolution of a polypeptide phospholipase A2 inhibitor. J Mol Biol 266:160–172PubMedCrossRefGoogle Scholar
  16. Diviani D, Scott JD (2001) AKAP signaling complexes at the cytoskeleton. J Cell Sci 114:1431–1437PubMedGoogle Scholar
  17. El-Sayed NM, Hegde P, Quackenbush J, Melville SE, Donelson JE (2000) The African trypanosome genome. Int J Parasitol 30:329–345PubMedGoogle Scholar
  18. El-Sayed NM, Ghedin E, Song J, MacLeod A, Bringaud F, Larkin C, Wanless D, Peterson J, Hou L, Taylor S, Tweedie A, Biteau N, Khalak HG, Lin X, Mason T, Hannick L, Caler E, Blandin G, Bartholomeu D, Simpson AJ, Kaul S, Zhao H, Pai G, Van Aken S, Utterback T, Haas B, Koo HL, Umayam L, Suh B, Gerrard C, Leech V, Qi R, Zhou S, Schwartz D, Feldblyum T, Salzberg S, Tait A, Turner CM, Ullu E, White O, Melville S, Adams MD, Fraser CM, Donelson JE (2003) The sequence and analysis of Trypanosoma brucei chromosome II. Nucleic Acids Res 31:4856–4863PubMedCrossRefGoogle Scholar
  19. Emori Y, Ohno S, Tobita M, Suzuki K (1986) Gene structure of calcium-dependent protease retains the ancestral organization of the calcium-binding protein gene. FEBS Lett 194:249–252PubMedCrossRefGoogle Scholar
  20. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801PubMedGoogle Scholar
  21. Gull K (1999) The cytoskeleton of trypanosomatid parasites. Annu Rev Microbiol 53:629–655PubMedCrossRefGoogle Scholar
  22. Hall N, Berriman M, Lennard NJ, Harris BR, Hertz-Fowler C, Bart-Delabesse EN, Gerrard CS, Atkin RJ, Barron AJ, Bowman S, Bray-Allen SP, Bringaud F, Clark LN, Corton CH, Cronin A, Davies R, Doggett J, Fraser A, Gruter E, Hall S, Harper AD, Kay MP, Leech V, Mayes R, Price C, Quail MA, Rabbinowitsch E, Reitter C, Rutherford K, Sasse J, Sharp S, Shownkeen R, MacLeod A, Taylor S, Tweedie A, Turner CM, Tait A, Gull K, Barrell B, Melville SE (2003) The DNA sequence of chromosome I of an African trypanosome: gene content, chromosome organisation, recombination and polymorphism. Nucleic Acids Res 31:4864–4873PubMedGoogle Scholar
  23. Hertz-Fowler C, Ersfeld K, Gull K (2001) CAP5.5, a life-cycle-regulated, cytoskeleton-associated protein is a member of a novel family of calpain-related proteins in Trypanosoma brucei. Mol Biochem Parasitol 116:25–34PubMedCrossRefGoogle Scholar
  24. Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PE, del Bosque-Plata L, Oda Y, Yoshiuchi I, Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N, Schulze J, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bell GI (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 26:163–175PubMedGoogle Scholar
  25. Hosfield CM, Elce JS, Davies PL, Jia Z (1999a) Crystal structure of calpain reveals the structural basis for Ca(2+)-dependent protease activity and a novel mode of enzyme activation. EMBO J 18:6880–6889CrossRefGoogle Scholar
  26. Hosfield CM, Ye Q, Arthur JS, Hegadorn C, Croall DE, Elce JS, Jia Z (1999b) Crystallization and X-ray crystallographic analysis of m-calpain, a Ca2+-dependent protease. Acta Crystallogr D Biol Crystallogr 55(8):1484–1846CrossRefGoogle Scholar
  27. Huang Y, Wang KK (2001) The calpain family and human disease. Trends Mol Med 7:355–362PubMedCrossRefGoogle Scholar
  28. Jekely G, Friedrich P (1999) The evolution of the calpain family as reflected in paralogous chromosome regions. J Mol Evol 49:272–281PubMedGoogle Scholar
  29. Lafaille JJ, Linss J, Krieger MA, Souto-Padron T, de Souza W, Goldenberg S (1989) Structure and expression of two Trypanosoma cruzi genes encoding antigenic proteins bearing repetitive epitopes. Mol Biochem Parasitol 35:127–136PubMedCrossRefGoogle Scholar
  30. Lamb AL, Torres AS, O’Halloran TV, Rosenzweig AC (2000) Heterodimer formation between superoxide dismutase and its copper chaperone. Biochemistry 39:14720–14727PubMedGoogle Scholar
  31. Maretzki D, Mariani M, Lutz HU (1990) Fatty acid acylation of membrane skeletal proteins in human erythrocytes. FEBS Lett 259:305–310PubMedCrossRefGoogle Scholar
  32. Margis R, Margis-Pinheiro M (2003) Phytocalpains: orthologous calcium-dependent cysteine proteinases. Trends Plant Sci 8:58–62PubMedCrossRefGoogle Scholar
  33. Mariani M, Maretzki D, Lutz HU (1993) A tightly membrane-associated subpopulation of spectrin is 3H-palmitoylated. J Biol Chem 268:12996–13001PubMedGoogle Scholar
  34. Matthews KR, Gull K (1994) Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes. J Cell Biol 125:1147–1156PubMedCrossRefGoogle Scholar
  35. Maurer-Stroh S, Eisenhaber B, Eisenhaber F (2002) N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J Mol Biol 317:541–557PubMedGoogle Scholar
  36. Moldoveanu T, Hosfield CM, Lim D, Elce JS, Jia Z, Davies PL (2002) A Ca(2+) switch aligns the active site of calpain. Cell 108:649–660PubMedCrossRefGoogle Scholar
  37. Moldoveanu T, Jia Z, Davies PL (2004) Calpain activation by cooperative Ca2+ binding at two non-EF-hand sites. J Biol Chem 279:6106–6114PubMedGoogle Scholar
  38. Mottram JC, Helms MJ, Coombs GH, Sajid M (2003) Clan CD cysteine peptidases of parasitic protozoa. Trends Parasitol 19:182–187PubMedCrossRefGoogle Scholar
  39. Muller N, Hemphill A, Imboden M, Duvallet G, Dwinger RH, Seebeck T (1992) Identification and characterization of two repetitive non-variable antigens from African trypanosomes which are recognized early during infection. Parasitology 104(1):111–120PubMedCrossRefGoogle Scholar
  40. Myler PJ, Audleman L, deVos T, Hixson G, Kiser P, Lemley C, Magness C, Rickel E, Sisk E, Sunkin S, Swartzell S, Westlake T, Bastien P, Fu G, Ivens A, Stuart K (1999) Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proc Natl Acad Sci USA 96:2902–2906PubMedCrossRefGoogle Scholar
  41. Newlon MG, Roy M, Morikis D, Hausken ZE, Coghlan V, Scott JD, Jennings PA (1999) The molecular basis for protein kinase A anchoring revealed by solution NMR. Nat Struct Biol 6:222–227PubMedGoogle Scholar
  42. Newlon MG, Roy M, Morikis D, Carr DW, Westphal R, Scott JD, Jennings PA (2001) A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J 20:1651–1662PubMedCrossRefGoogle Scholar
  43. Ohno S, Emori Y, Imajoh S, Kawasaki H, Kisaragi M, Suzuki K (1984) Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature 312:566–570PubMedCrossRefGoogle Scholar
  44. Ono Y, Sorimachi H, Suzuki K (1998) Structure and physiology of calpain, an enigmatic protease. Biochem Biophys Res Commun 245:289–294PubMedCrossRefGoogle Scholar
  45. Pils B, Schultz J (2004) Inactive enzyme-homologues find new function in regulatory processes. J Mol Biol 340:399–404PubMedCrossRefGoogle Scholar
  46. Resh MD, (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451:1–16PubMedGoogle Scholar
  47. Reverter D, Strobl S, Fernandez-Catalan C, Sorimachi H, Suzuki K, Bode W (2001) Structural basis for possible calcium-induced activation mechanisms of calpains. Biol Chem 382:753–766PubMedCrossRefGoogle Scholar
  48. Richard I, Broux O, Allamand V, et al. (1995) Mutations in the proteolytic enzyme calpain 3 cause limb–girdle muscular dystrophy type 2A. Cell 81:27–40PubMedCrossRefGoogle Scholar
  49. Rizo J, Sudhof TC (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273:15879–15882PubMedCrossRefGoogle Scholar
  50. Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21PubMedCrossRefGoogle Scholar
  51. Sato K, Kawashima S (2001) Calpain function in the modulation of signal transduction molecules. Biol Chem 382:743–751PubMedCrossRefGoogle Scholar
  52. Saxena A, Worthey EA, Yan S, Leland A, Stuart KD, Myler PJ (2003) Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarray analysis. Mol Biochem Parasitol 129:103–114PubMedCrossRefGoogle Scholar
  53. Sorimachi H, Suzuki K (2001) The structure of calpain. J Biochem (Tokyo) 129:653–664Google Scholar
  54. Sorimachi H, Ishiura S, Suzuki K (1997) Structure and physiological function of calpains. Biochem J 328(3):721–732PubMedGoogle Scholar
  55. Staufenbiel M, Lazarides E (1986) Ankyrin is fatty acid acylated in erythrocytes. Proc Natl Acad Sci USA 83:318–322PubMedGoogle Scholar
  56. Stevens JR, Noyes HA, Dover GA, Gibson WC (1999) The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 118(1):107–116PubMedCrossRefGoogle Scholar
  57. Strobl S, Fernandez-Catalan C, Braun M, Huber R, Masumoto H, Nakagawa K, Irie A, Sorimachi H, Bourenkow G, Bartunik H, Suzuki K, Bode W (2000) The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc Natl Acad Sci USA 97:588–592PubMedCrossRefGoogle Scholar
  58. Taveau M, Bourg N, Sillon G, Roudaut C, Bartoli M, Richard I (2003) Calpain 3 is activated through autolysis within the active site and lyzes sarcomeric and sarcolemmal components. Mol Cell Biol 23:9127–9135PubMedCrossRefGoogle Scholar
  59. Todd AE, Orengo CA, Thornton JM (2001) Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol 307:1113–1143PubMedCrossRefGoogle Scholar
  60. Todd AE, Orengo CA, Thornton JM (2002) Sequence and structural differences between enzyme and nonenzyme homologs. Structure (Cambr) 10:1435–1451Google Scholar
  61. Tull D, Vince JE, Callaghan JM, Naderer T, Spurck T, McFadden GI, Currie G, Ferguson K, Bacic A, McConville MJ (2004) SMP-1, a member of a new family of small myristoylated proteins in kinetoplastid parasites, is targeted to the flagellum membrane in Leishmania. Mol Biol Cell 15:4775–4786PubMedCrossRefGoogle Scholar
  62. Wilson ME, Young BM, Andersen KP, Weinstock JV, Metwali A, Ali KM, Donelson JE (1995) A recombinant Leishmania chagasi antigen that stimulates cellular immune responses in infected mice. Infect Immun 63:2062–2069PubMedGoogle Scholar
  63. Worthey EA, Martinez-Calvillo S, Schnaufer A, Aggarwal G, Cawthra J, Fazelinia G, Fong C, Fu G, Hassebrock M, Hixson G, Ivens AC, Kiser P, Marsolini F, Rickell E, Salavati R, Sisk E, Sunkin SM, Stuart KD, Myler PJ (2003) Leishmania major chromosome 3 contains two long convergent polycistronic gene clusters separated by a tRNA gene. Nucleic Acids Res 31:4201–4210PubMedGoogle Scholar
  64. Wu Y, Wang X, Liu X, Wang Y (2003) Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res 13:601–616PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of HullHullUK
  2. 2.School of Biological SciencesUniversity of ManchesterManchesterUK
  3. 3.Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
  4. 4.Corbett Research, Centre for ImmunologySt. Vincents Hospital Cnr.SydneyAustralia

Personalised recommendations