Journal of Molecular Evolution

, Volume 60, Issue 5, pp 635–652 | Cite as

Grass Evolution Inferred from Chromosomal Rearrangements and Geometrical and Statistical Features in RNA Structure

Article

Abstract

The grasses (Poaceae) represent a monophyletic lineage that arose about 70 million years ago. The lineage contains about 10,000 species that differ widely in morphology and physiology. Species show striking differences in genome size, a feature important in the context of conservation of gene content and order (synteny and colinearity) and in the extension of genomic information directly from one grass species to another using comparative approaches. Grass diversification has been a contentious issue, as the exact branching order of the various subfamilies has been difficult to establish with standard methods. This motivated an evolutionary study of deep phylogenetic relationships based on the structure of coding and non-coding RNA molecules and on chromosomal rearrangements. Phylogenetic relationships in the grass family were inferred directly from the structure of RNA using cladistic principles and considerations in statistical mechanics. Coded attributes describing topological and thermodynamic information embedded in RNA molecules were treated as linearly ordered multi-state characters and were polarized by fixing the direction of character transformation toward molecular order. Intrinsically rooted phylogenies derived from the structure of signal recognition particle (SRP) RNA, the mRNA encoded by the early nodulation gene enod40, the small subunit of ribosomal RNA (rRNA), and the internal transcribed spacer ITS1 of rRNA established an order for the diversification of major grass lineages, suggesting a sister relationship of the Pooideae and the PACCAD clade. This same conclusion was reached when large-scale chromosomal rearrangements derived from the comparative genetic mapping of cereal genomes were studied. Chromosomal complements aligned in the most parsimonious manner allowed identification and coding of characters depicting chromosomal translocations, insertions, and linkage block arrangements and the reconstruction of phylogenetic trees based on large-scale chromosomal structure. Congruent reconstruction of deep branching relationships using geometrical and statistical features of RNA structure and orthology and large scale chromosomal recombination events support assumptions of polarization in character argumentation, and fail to falsify the claim that extant grass chromosomes can be considered combinations of linkage blocks of an ancestor of the rice genome. Congruence also suggests that the universal tendency toward order in RNA and the search for the most parsimonious organization of be genome architecture appear to be mutually supported drivers of molecular evolution. The study clarifies the relationship of major clades in the grasses, shows that phylogenetic history can be reconstructed effectively from the combinatorial exchange of chromosomal linkage blocks, and reveals considerable phylogenetic signal embedded in the structure of signal polypeptide-coding mRNA molecules, describing an instance where mRNA structure is the subject of strong evolutionary constraint.

Keywords

Chromosomal rearrangements Claditics Grass evolution Grass phylogeny RNA structure 

References

  1. Ancel, LW, Fontana, W 2000Plasticity, evolvability, and modularity in RNAJ Exp Zool288242283CrossRefGoogle Scholar
  2. Bennet, MD, Leitch, IJ 2001Plant DNA C-value database (release 1.0, September 2001)Royal Botanic GardensKewGoogle Scholar
  3. Bennetzen, JL, Kellogg, EA 1997Do plants have a one-way ticket to genomic obesity?Plant Cell915091514PubMedGoogle Scholar
  4. Brunel, C, Marquet, R, Romby, P, Ehresmann, C 2002RNA loop-loop interactions as dynamic functional motifsBiochimie84925944PubMedGoogle Scholar
  5. Bryant, HN 1991The polarization of character transformations in phylogenetic systematics: role of axiomatic and auxiliary assumptionsSyst Zool40433445Google Scholar
  6. Buckler, IV ES, Ippolito, A, Holtsford, TP 1997The evolution of ribosomal DNA: divergent paralogues and phylogenetic implicationsGenetics145821832PubMedGoogle Scholar
  7. Caetano-Anollés, G 2001Novel strategies to study the role of mutation and nucleic acid structure in evolutionPlant Cell Tissue Org Cult67115132Google Scholar
  8. Caetano-Anollés, G 2002aEvolved RNA secondary structure and the rooting of the universal treeJ Mol Evol54333345Google Scholar
  9. Caetano-Anollés, G 2002bTracing the evolution of RNA structure in ribosomesNucleic Acids Res3025752587Google Scholar
  10. Cate, JH, Yusupov, MM, Yusupova, GZ, Earnest, TN, Noller, HF 1999X-ray crystal structure of 70S ribosome functional complexesScience28520952104PubMedGoogle Scholar
  11. Clayton, WD, Renvoize, SA 1986Genera Graminium: Grasses of the world. Kew Bulletin Additional Series XIII. Royal Botanical Gardens, KewHer Majesty’s Stationery OfficeLondonGoogle Scholar
  12. Devos, KM, Gale, MD 2000Genome relationships: the grass model in current researchPlant Cell12637646PubMedGoogle Scholar
  13. Devos, KM, Pittaway, TS, Reynolds, A, Gale, MD 2000Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and riceTheor Appl Genet100190198Google Scholar
  14. Farris, JS, Kallersjö, M, Kluge, AG, Bull, C 1995Testing significance of incongruenceCladistics10315319CrossRefGoogle Scholar
  15. Felsenstein, J 1985Confidence limits on phylogenies: an approach using the bootstrapEvolution39783791Google Scholar
  16. Fontana, W 2002Modelling ‘evo-devo’ with RNABioEssays2411641177PubMedGoogle Scholar
  17. Fontana, W, Konings, DA, Stadler, PF, Schuster, P 1993Statistics of RNA secondary structuresBiopolymers3313891404PubMedGoogle Scholar
  18. Fontana, W, Schuster, P 1998Continuity in evolution: on the nature of transitionsScience28014511455PubMedGoogle Scholar
  19. Gale, MD, Devos, KM 1998aPlant comparative genetics after 10 yearsScience282656659Google Scholar
  20. Gale, MD, Devos, KM 1998bComparative genetics in the grassesProc Natl Acad Sci USA9519711974Google Scholar
  21. Girard, G, Roussis, A, Gultyaev, AP, Preij, CWA, Paink, HP 2003Structural motifs in the RNA encoded by the early nodulation gene enod40 of soybeanNucleic Acids Res3150035015PubMedGoogle Scholar
  22. Gladyshev, GP, Ershov, YA 1982Principles of the thermodynamics of biological systemsJ Theor Biol94301343PubMedGoogle Scholar
  23. GPWG (Grass Phylogeny Working Group)2001Phylogeny and subfamilial classification of the grasses (Poaceae)Ann Missouri Bot Gard88373457Google Scholar
  24. Gultyaev, PA, van Batenburg, FHD, Pleij, CWA 2002Selective pressures on RNA hairpins in vivo and in vitroJ Mol Evol5418PubMedGoogle Scholar
  25. Hamby, RK, Zimmer, EA 1988Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae)Plant Syst Evol1602937Google Scholar
  26. Hermann, T, Patel, DJ 1999Stitching together RNA tertiary architecturesJ Mol Biol294829849PubMedGoogle Scholar
  27. Higgs, PG 1993RNA secondary structure: a comparison of real and random sequencesJ Phys I France34359Google Scholar
  28. Higgs, PG 1995Thermodynamic properties of transfer RNA: a computational studyJ Chem Soc Faraday Trans912531 2540Google Scholar
  29. Hofacker, IL, Fekete, M, Stadler, PF 2002Secondary structure prediction for aligned RNA sequencesJ Mol Biol31910591066CrossRefPubMedGoogle Scholar
  30. Hofacker, IL, Fontana, W, Stadler, PF, Bonhoeffer, LS, Tacker, M, Schuster, P 1994Fast folding and comparison of RNA secondary structuresMonatshefte Chem125167188Google Scholar
  31. Hsiao, C, Jacobs, SWL, Chatterton, NJ, Asay, KH 1999A molecular phylogeny of the grass family (Poaceae) based on the sequences of nuclear ribosomal DNA (ITS)Aust Syst Bot11667688Google Scholar
  32. Huynen, M, Gutell, R, Konings, D 1997Assessing the reliability of RNA folding using statistical mechanicsJ Mol Biol26711041112PubMedGoogle Scholar
  33. Huynen, MA, Stadler, PF, Fontana, W 1996Smoothness with ruggedness: the role of neutrality in adaptationProc Natl Acad Sci USA86397401Google Scholar
  34. Jacobs, BF, Kingston, JD, Jacobs, LL 1999The origin of grass-dominated ecosystemsAnn Missouri Bot Gard86590643Google Scholar
  35. James, BD, Olsen, GJ, Pace, NR 1989Phylogenetic comparative analysis of RNA secondary structureMethods Enzymol180227239PubMedGoogle Scholar
  36. Kauffmann, SA 1993The origins of orderOxford University PressNew YorkGoogle Scholar
  37. Keenan, RJ, Freymann, DM, Stroud, RM, Walter, P 2001The signal recognition particleAnnu Rev Biochem70755775PubMedGoogle Scholar
  38. Kellogg, EA 1998Relationships of cereal crops and other grassesProc Natl Acad Sci USA9520052010PubMedGoogle Scholar
  39. Kellogg, EA 2001Evolutionary history of the grassesPlant Physiol12511981205PubMedGoogle Scholar
  40. Kennard, W, Phillips, R, Porter, R, Grombacher, A 1999A comparative map of wild rice (Zizania palustris L2n=2x=30). Theor Appl Genet99793799Google Scholar
  41. Kierzek, E, Biala, E, Kierzek, R 2001Elements of thermodynamics in RNA evolutionActa Biochim Polonica48485493Google Scholar
  42. Konings, DAM, Gutell, RR 1995A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNARNA1559574PubMedGoogle Scholar
  43. Le SY Zhang,  K, Maizel, JV,Jr 2002RNA molecules with structure dependent functions are uniquely foldedNucleic Acids Res3035743582PubMedGoogle Scholar
  44. Maddison, WP, Donoghue, MJ, Maddison, DR 1984Outgroup analysis and parsimonySyst Zool3383103Google Scholar
  45. Maddison, WP, Maddison, DR 1999MacClade: analysis of phylogeny and character evolution, Version 3.08Sinauer AssociatesSunderland, MAGoogle Scholar
  46. Mathews, DH, Sabina, J, Zuker, M, Turner, DH 1999Expanded sequence dependence of thermodynamic parameters provides robust prediction of RNA secondary structureJ Mol Biol288911940PubMedGoogle Scholar
  47. Matsuoka, Y, Yamazaki, Y, Ogihara, Y, Tsunewaki, K 2002Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cerealsMol Biol Evol1920842091PubMedGoogle Scholar
  48. McCaskill, JS 1990The equilibrium partition function and base pair binding probabilities fo RNA secondary structuresBiopolymers2911051119PubMedGoogle Scholar
  49. Page, RDM, Holmes, EC 1998Molecular evolution: A phylogenetic approachBlackwell ScienceOxfordGoogle Scholar
  50. Petrov, DA 2001Evolution of genome size: new approaches to an old problemTrends Genet172328PubMedGoogle Scholar
  51. Pollock, DD 2003The Zuckerkandl Prize: structure and evolutionJ Mol Evol56375376Google Scholar
  52. Rivas, E, Eddy, SR 2000Secondary structure alone is generally not statistically significant for the detection of noncoding RNAsBioinformatics16583605PubMedGoogle Scholar
  53. Rohrig, H, Schmidt, J, Miklashevichs, E, Schell, J, John, M 2002Soybean enod40 encodes two peptides that bind to sucrose synthaseProc Natl Acad Sci USA9919151920PubMedGoogle Scholar
  54. Rosenblad, MA, Gorodkin, J, Knudsen, B, Zwieb, C, Samuelsson, T 2003SRPDB: Signal recognition particle databaseNucleic Acids Res31363364PubMedGoogle Scholar
  55. Savva, G, Dicks, J, Roberts, IN 2003Current approaches to whole genome phylogenetic analysisBrief Bioinform46374PubMedGoogle Scholar
  56. Schultes, EA, Bartel, DP 2000One sequence, two ribozymes: implications for the emergence of new ribozyme foldsScience289448452PubMedGoogle Scholar
  57. Schultes, EA, Hraber, PT, LaBean, TH 1999Estimating the contributions of selection and self-organization in RNA secondary structureJ Mol Evol497683PubMedGoogle Scholar
  58. Schuster, P, Fontana, W, Stadler, PF, Hofacker, IL 1994From sequences to shapes and back: a case study in RNA secondary structureProc R Soc London Ser B255279284Google Scholar
  59. Schuster, P, Stadler, PF, Renner, A 1997RNA structures and folding: from conventional to new issues in structure predictionsCurr Opin Struct Biol7229235PubMedGoogle Scholar
  60. Sousa, C, Johansson, C, CharonManyani, H, Sautter, C, Kondorosi, A, Crespi, M 2001Translation and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortexMol Cell Biol21354366PubMedGoogle Scholar
  61. Steffens, W, Digby, D 1999mRNA have greater negative folding free energies than shuffled or codon choice randomized sequencesNucleic Acids Res2715781584PubMedGoogle Scholar
  62. Stegger, G, Hofman, H, Fortsch, J, Gross, HJ, Randles, JW, Sanger, HL, Riesner, D 1984Conformational transitions in viroids and virusoids: comparison of results from energy minimization algorithm and from experimental dataJ Biomol Struct Dynam2543571Google Scholar
  63. Swofford, DL 1998Phylogenetic analysis using parsimony and other programs (PAUP*), version 4.0Sinauer AssociatesSunderland, MAGoogle Scholar
  64. Tacker, M, Stadler, PF, Bornberg-Bauer, EG, Hofacker, IL, Schuster, P 1996Algorithm independent properties of RNA secondary structure predictionsEur Biophys J25115130Google Scholar
  65. Takaiwa, F, Oono, K, lida, Y, Sugiura, M 1995The complete nucleotide sequence of a rice 25S rRNA geneGene37255259Google Scholar
  66. Thiele, K 1993The holy grail of the perfect character: the cladistic treatment of morphometric dataCladistics9275304CrossRefGoogle Scholar
  67. Thorley, JL, Page, RDM 2000RadCon: phylogenetic tree comparison and consensusBioinformatics16486487CrossRefPubMedGoogle Scholar
  68. Washietl, S, Hofacker, IL 2004Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomicsJ Mol Biol3421930PubMedGoogle Scholar
  69. Watson, L, Dallwitz, MJ 1992The grass genera of the worldCAB InternationalWallingford, Oxon, UKGoogle Scholar
  70. Wheeler, WC 1990Combinatorial weights in phylogenetic analysisA statistical parsimony procedure. Cladistics6269275Google Scholar
  71. Wilkinson, M, Thorley, JL, Upchurch, P 2000A chain is no longer than its weakest link: double decay analysis of phylogenetic hypothesisSyst Biol49754776CrossRefPubMedGoogle Scholar
  72. Wright, S 1932The roles of mutation, inbreeding, crossbreeding and selection in evolutionProc Sixth Intl Congr Genet1356366Google Scholar
  73. Wuyts, J, Van de Peers, Y, Wachter, R 2001Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNANucleic Acids Res2950175028PubMedGoogle Scholar
  74. Yusupov, MM, Yusupova, GZ, Baucom, A, Lieberman, K, Earnest, TN, Cate, JHD, Noller, HF 2001Crystal structure of the ribosome at 5.5 Å resolutionScience292883896CrossRefPubMedGoogle Scholar
  75. Zhang, H, Jia, J, Gale, MD, Devos, KM 1998Relationships between the chromosomes of Aegilops umbellulata and wheatTheor Appl Genet966975Google Scholar
  76. Zuker, M 1989On finding all suboptimal foldings of an RNA moleculeScience2444852PubMedMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Crop SciencesUrbanaUSA
  2. 2.Department of Crop SciencesUniversity of IllinoisUrbana–ChampaignUSA

Personalised recommendations