Journal of Molecular Evolution

, Volume 60, Issue 6, pp 774–785

Protein Evolution in the Context of Drosophila Development



The tempo at which a protein evolves depends not only on the rate at which mutations arise but also on the selective effects that those mutations have at the organismal level. It is intuitive that proteins functioning during different stages of development may be predisposed to having mutations of different selective effects. For example, it has been hypothesized that changes to proteins expressed during early development should have larger phenotypic consequences because later stages depend on them. Conversely, changes to proteins expressed much later in development should have smaller consequences at the organismal level. Here we assess whether proteins expressed at different times during Drosophila development vary systematically in their rates of evolution. We find that proteins expressed early in development and particularly during mid–late embryonic development evolve unusually slowly. In addition, proteins expressed in adult males show an elevated evolutionary rate. These two trends are independent of each other and cannot be explained by peculiar rates of mutation or levels of codon bias. Moreover, the observed patterns appear to hold across several functional classes of genes, although the exact developmental time of the slowest protein evolution differs among each class. We discuss our results in connection with data on the evolution of development.


Expression profile Developmental Constraint Phylotypic stage Nonsynonymous rate Synonymous rate 


  1. Akashi, H 2001Gene expression and molecular evolutionCurr Opin Genet Dev11660666CrossRefPubMedGoogle Scholar
  2. Arbeitman, MN, Furlong, EE, Imam, F, Johnson, E, Null, BH, Baker, BS, Krasnow, MA, Scott, MP, Davis, RW, White, KP 2002Gene expression during the life cycle of Drosophila melanogasterScience29722702275CrossRefPubMedGoogle Scholar
  3. Arthur, W 1988A theory of the evolution of developmentWileyChichester, UK Google Scholar
  4. Arthur, W 1997The origin of animal body plans: A study in evolutionary developmental biologyCambridge University PressCambridgeGoogle Scholar
  5. Arthur, W 2000The concept of developmental reprogramming and the quest for an inclusive theory of evolutionary mechanismsEvol Dev24957CrossRefPubMedGoogle Scholar
  6. Ashburner, M, Ball, CA, Blake, JA, Botstein, D, Butler, H, Cherry, JM, Davis, AP, Dolinski, K, Dwight, SS, Eppig, JT, Harris, MA, Hill, DP, Issel-Tarver, L, Kasarskis, A, Lewis, S, Matese, JC, Richardson, JE, Ringwald, M, Rubin, GM, Sherlock, G 2000Gene ontology: Tool for the unification of biology. The Gene Ontology ConsortiumNat Genet252529CrossRefPubMedGoogle Scholar
  7. Boutanaev, AM, Kalmykova, AI, Shevelyov, YY, Nurminsky, DI 2002Large clusters of co-expressed genes in the Drosophila genomeNature420666669CrossRefPubMedGoogle Scholar
  8. Campos-Ortega, JA, Hartenstein, V 1997The embryonic development of Drosophila melanogasterSpringerBerlinGoogle Scholar
  9. Castillo-Davis, CI, Hartl, DL 2002Genome evolution and developmental constraint in Caenorhabditis elegansMol Biol Evol19728735PubMedGoogle Scholar
  10. Civetta, A, Singh, RS 1998Sex-related genes, directional sexual selection, and speciationMol Biol Evol15901909PubMedGoogle Scholar
  11. Clark, AG, Begun, DJ, Prout, T 1999Female × male interactions in Drosophila sperm competitionScience283217220CrossRefPubMedGoogle Scholar
  12. Clyne, PJ, Warr, CG, Carlson, JR 2000Candidate taste receptors in DrosophilaScience28718301834CrossRefPubMedGoogle Scholar
  13. Conery JS, Lynch M (2001) Nucleotide substitutions and the evolution of duplicate genes. Pac Symp Biocomput pp 167–178Google Scholar
  14. Coulthart, MB, Singh, RS 1988High level of divergence of male-reproductive tract proteins, between Drosophila melanogaster and its sibling species, D simulansMol Biol Evol5182191PubMedGoogle Scholar
  15. Cutter, AD, Payseur, BA, Salcedo, T, Estes, AM, Good, JM, Wood, E, Hartl, T, Maughan, H, Strempel, J, Wang, B, Bryan, AC, Dellos, M 2003Molecular correlates of genes exhibiting RNAi phenotypes in Caenorhabditis elegansGenome Res1326512657CrossRefPubMedGoogle Scholar
  16. Domazet-Loso, T, Tautz, D 2003An evolutionary analysis of orphan genes in DrosophilaGenome Res1322132219CrossRefPubMedGoogle Scholar
  17. Fisher, RA 1930The genetical theory of natural selectionClarendon PressOxfordGoogle Scholar
  18. Fraser, HB, Hirsh, AE, Steinmetz, LM, Scharfe, C, Feldman, MW 2002Evolutionary rate in the protein interaction networkScience296750752CrossRefPubMedGoogle Scholar
  19. Galies, F, Metz, JA 2001Testing the vulnerability of the phylotypic stage: On modularity and evolutionary conservationJ Exp Zool291195204CrossRefPubMedGoogle Scholar
  20. Galis, F, Dooren, TJ, Metz, JA 2002Conservation of the segmented germband stage: robustness or pleiotropy?Trends Genet18504509CrossRefPubMedGoogle Scholar
  21. Gavrilets, S 2000Rapid evolution of reproductive barriers driven by sexual conflictNature403886889Google Scholar
  22. Gellon, G, McGinnis, W 1998Shaping animal body plans in development and evolution by modulation of Hox expression patternsBioessays20116125CrossRefPubMedGoogle Scholar
  23. Goldstein, B, Frisse, LM, Thomas, WK 1998Embryonic axis specification in nematodes: evolution of the first step in developmentCurr Biol8157160CrossRefPubMedGoogle Scholar
  24. Goodwill, BC, Kauffman, S, Murray, JD 1993Is morphogenesis an intrinsically robust process?J Theor Biol163135144CrossRefPubMedGoogle Scholar
  25. Hartl, DL, Clark, AG 1997Principles of population geneticsSinauer Associates Sunderland, MAGoogle Scholar
  26. Hirsh, AE, Fraser, HB 2001Protein dispensability and rate of evolutionNature41110461049CrossRefPubMedGoogle Scholar
  27. Ikemura, T 1981Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational systemJ Mol Biol151389409CrossRefPubMedGoogle Scholar
  28. Jordan, IK, Rogozin, IB, Wolf, YI, Koonin, EV 2002Essential genes are more evolutionarily conserved than are nonessential genes in bacteriaGenome Res12962968PubMedGoogle Scholar
  29. Lawrence, PA 1992The making of a fly: The genetics of animal designBlackwell ScienceOxfordGoogle Scholar
  30. Levy, LS, Manning, JE 1981Messenger RNA sequence complexity and homology in developmental stages of DrosophilaDev Biol85141149CrossRefPubMedGoogle Scholar
  31. Orr, HA 2000Adaptation and the cost of complexityEvolution Int J Org Evolution541320Google Scholar
  32. Pal, C, Papp, B, Hurst, LD 2001Highly expressed genes in yeast evolve slowlyGenetics158927931PubMedGoogle Scholar
  33. Powell, JR, Caccone, A, Gleason, JM, Nigro, L 1993Rates of DNA evolution in Drosophila depend on function and developmental stage of expressionGenetics133291298PubMedGoogle Scholar
  34. Raff, RA 1996The shape of life: Genes, development, and the evolution of animal formUniversity of Chicago PressChicagoGoogle Scholar
  35. Rasmussen, N 1996A new model of developmental constraints as applied to the Drosophila systemJ Theor Biol127271299Google Scholar
  36. Rice, WR 1996Sexually antagonistic male adaptation triggered by experimental arrest of female evolutionNature381232234CrossRefPubMedGoogle Scholar
  37. Riedl, R 1978Order in living organisms: A systems analysis of evolutionWileyNew YorkGoogle Scholar
  38. Robertson, HM, Warr, CG, Carlson, JR 2003Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogasterProc Natl Acad Sci USA1001453714542CrossRefPubMedGoogle Scholar
  39. Sokal, RR, Rohlf, FJ 1995Biometry: The principles and practice of statistics in biological researchWH FreemanNew YorkGoogle Scholar
  40. Spellman, PT, Rubin, GM 2002Evidence for large domains of similarly expressed genes in the Drosophila genomeJ Biol15CrossRefPubMedGoogle Scholar
  41. Swanson, WJ, Vacquier, VD 2002The rapid evolution of reproductive proteinsNat Rev Genet3137144CrossRefPubMedGoogle Scholar
  42. Swanson, WJ, Clark, AG, Waldrip-Dail, HM, Wolfner, MF, Aquadro, CF 2001Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in DrosophilaProc Natl Acad Sci9873757379CrossRefPubMedGoogle Scholar
  43. Dassow, G, Odell, GM 2002Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switchesJ Exp Zool294179215CrossRefPubMedGoogle Scholar
  44. Dassow, G, Meir, E, Munro, EM, Odell, GM 2000The segment polarity network is a robust developmental moduleNature406188192CrossRefPubMedGoogle Scholar
  45. Waddington, CH 1966Principles of development and differentiationMacmillanNew YorkGoogle Scholar
  46. Wagner, GP, Misof, BY 1993How can a character be developmentally constrained despite variation in developmental pathways?J Evolut Biol6449455CrossRefGoogle Scholar
  47. Wyckoff, GJ, Wang, W, Wu, CI 2000Rapid evolution of male reproductive genes in the descent of manNature403304309CrossRefPubMedGoogle Scholar
  48. Yang, Z 1997PAML: A program package for phylogenetic analysis by maximum likelihoodComput Appl Biosci13555556PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Jerel C. Davis
    • 1
  • Onn Brandman
    • 2
  • Dmitri A. Petrov
    • 1
  1. 1.Department of Biological ScienceStanford UniversityStanfordUSA
  2. 2.Department of Molecular Pharmacology, W200 Clark, 318 Campus DriveStanford University Medical SchoolStanfordUSA

Personalised recommendations