Journal of Molecular Evolution

, Volume 61, Issue 5, pp 666–681 | Cite as

Comparative Phylogenetic Analyses of the Adaptive Radiation of Lake Tanganyika Cichlid Fish: Nuclear Sequences Are Less Homoplasious But Also Less Informative Than Mitochondrial DNA

  • Céline Clabaut
  • Walter Salzburger
  • Axel MeyerEmail author


Over 200 described endemic species make up the adaptive radiation of cichlids in Lake Tanga-nyika. This species assemblage has been viewed as both an evolutionary reservoir of old cichlid lineages and an evolutionary hotspot from which the modern cichlid lineages arose, seeding the adaptive radiations in Lakes Victoria and Malawi. Here we report on a phylogenetic analysis of Lake Tanganyika cichlids combining the previously determined sequences of the mitochondrial ND2 gene (1047 bp) with newly derived sequences of the nuclear RAG1 gene (∼700 bp of intron 2 and ∼1100 bp of exon 3). The nuclear data—in agreement with mitochondrial DNA—suggest that Lake Tanganyika harbors several ancient lineages that did not undergo rampant speciation (e.g., Bathybatini, Trematocarini). We find strong support for the monophyly of the most species-rich Tanganyikan group, the Lamprologini, and we propose a new taxonomic group that we term the C-lineage. The Haplochromini and Tropheini both have an 11-bp deletion in the intron of RAG1, strongly supporting the monophyly of this clade and its derived position. Mapping the phylogenetically informative positions revealed that, for certain branches, there are six times fewer apomorphies in RAG1. However, the consistency index of these positions is higher compared to the mitochondrial ND2 gene. Nuclear data therefore provide, on a per–base pair basis, less but more reliable phylogenetic information. Even if in our case RAG1 has not provided as much phylogenetic information as we expected, we suggest that this marker might be useful in the resolution of the phylogeny of older groups.


Adaptive radiation Cichlid species flocks Explosive speciation Nuclear DNA phylogeny NADH Dehydrogenase Subunit II RAG1 C-lineage 



We thank S. Koblmüller, J. Snoeks, C. Sturmbauer, E. Verheyen, and L. De Vos for provision and identification of some of the specimens and R. Gueta, I. Eistetter, T. Mack, and the other members of the Meyer lab for technical assistance. We are grateful to M. Cummings and L. Rüber and the second anonymous reviewer for discussions and valuable comments on the manuscript. This study was supported by the Landesstiftung Baden-Württemberg, the Center for Junior Research Fellows (University Konstanz), and the EU (Marie Curie fellowship) to W.S. and grants from the Deutsche Forschungsgemeinschaft to A.M.


  1. Abila R, Barluenga M, Engelken J, Meyer A, Salzburger W (2004) Population-structure and genetic diversity in a haplochromine cichlid of a satellite lake of Lake Victoria. Mol Ecol 13(9):2589–2602CrossRefPubMedGoogle Scholar
  2. Albertson RC, Markert JA, Danley PD, Kocher TD (1999) Phylogeny of a rapidly evolving clade: The cichlid fish of Lake Malawi, East Africa. Proc Natl Acad Sci USA 96:5107–5110CrossRefPubMedGoogle Scholar
  3. Allender CJ, Seehausen O, Knight ME, Turner GF, Maclean N (2003) Divergent selection during speciation of Lake Malawi cichlid fish inferred from parallel radiations in nuptial coloration. Proc Natl Acad Sci USA 100:14074–14079CrossRefPubMedGoogle Scholar
  4. Anderson S, deBruijn MHL, Coulson AR, Eperon IC, Sanger F, Young I (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717CrossRefPubMedGoogle Scholar
  5. Avise JC (1984) Molecular markers, natural history and evolution. Chapmann & Hall, New YorkGoogle Scholar
  6. Bininda-Edmonds ORP, Sanderson MJ (2001) Assessment of the accuracy of matrix representation with parsimony analysis supertree reconstruction. Syst Biol 50:565–579CrossRefPubMedGoogle Scholar
  7. Brinkmann H, Venkatesh B, Brenner S, Meyer A (2004a) Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc Natl Acad of Sci 101:4900–4905CrossRefGoogle Scholar
  8. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239CrossRefPubMedGoogle Scholar
  9. Brower AVZ, DeSalle R, Vogler A (1996) Gene trees, species tree, and systematics. Annu Rev Ecol Syst 27:423–450CrossRefGoogle Scholar
  10. Brufford MW, Hanotte O, Brookfield JFY, Burke T (1998) Multilocus and single-locus DNA fingerprinting. In: Hoelzel A (ed) Molecular genetic analysis of populations: a practical approach. Oxford University Press, Oxford, pp 287–336Google Scholar
  11. Cohen A, Lezzar K, Tiercelin J, Soreghan M (1997) New paleontologic and lake level reconstructions of Lake Tanganyika: implication for tectonic, climatic and biological evolution in a rift lake. Basin Res 7:107–132CrossRefGoogle Scholar
  12. Cohen A, Soreghan M, Scholz C (1993) Estimating the age of formation of lakes: An example from Lake Tanganyika, East African Rift system. Geology 21:511–514CrossRefGoogle Scholar
  13. Cummings MP, Otto SP, Wakeley J (1995) Sampling properties of DNA sequence data in phylogenetic analysis. Mol Biol Evol 12:814–822PubMedGoogle Scholar
  14. De Vos L, Seegers L (1998) Seven new Orthochromis species (Teleostei: Cichlidae) from the Malagarazi, Luiche und Rugufu basins (Lake Tanganyika drainage), with notes on their reproductive biology. Ichthyol Explor Freshwaters 9:371–420Google Scholar
  15. Farias IP, Orti G, Meyer A (2000) Total evidences: molecules, morphology, and the phylogenetics of cichlids fish. Mol Dev Evol 288:76–92CrossRefGoogle Scholar
  16. Felsenstein J (2004) Inferring phylogenies. Sinauer Associate, Sunderland, MAGoogle Scholar
  17. Flynn JJ, Nedbal MA (1998) Phylogeny of the Carnivora (Mammalia): Congruence vs. incompatibility among multiple data sets. Mol Phylogenet Evol 9:414–426CrossRefPubMedGoogle Scholar
  18. Fryer G, Iles TD (1972) The cichlid fish of the Great Lakes of Africa. T.H.F., Neptune City, NJGoogle Scholar
  19. Greenwood PH (1973) A revision of Haplochromis and related species (pisces, Cichlidae) from Lake George, Uganda. Bull Br Mus Nat Hist (Zool) 25:141–242Google Scholar
  20. Greenwood PH (1980) Towards a phyletic classification of the “genus” Haplochromis (Pisces, Cichlidae) and related taxa. Part II. The species from Lakes Victoria, Nabugabo, Edward, Georg and Kivu. Bull Br Mus Nat Hist (Zool) 39:1–101Google Scholar
  21. Greenwood PH (1981) The haplochromine fish of the East African lakes. Cornell University Press, Ithaca, NYGoogle Scholar
  22. Hasegawa M, Kishino H, Yano T (1985) Dating of the human–ape splitting by a molecular clock of mitchondrial DNA. J Mol Evol 22:160–174CrossRefPubMedGoogle Scholar
  23. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  24. Klett V, Meyer A (2002) What, if anything, is a Tilapia?—Mitochondrial ND2 phylogeny of Tilapiines and the evolution of parental care systems in the african cichlid fish. Mol Biol Evol 19:865–883PubMedGoogle Scholar
  25. Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32Google Scholar
  26. Koblmüller S, Salzburger W, Stumbauer C (2004) Evolutionary relationships in the sand-dwelling cichlid lineage of Lake Tanganyika suggest multiple colonization of rocky habitats and convergent origin of biparental mouthbrooding. J Mol Evol 58:79–96CrossRefPubMedGoogle Scholar
  27. Kocher TD, (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298CrossRefPubMedGoogle Scholar
  28. Kocher TD, Conroy JA, McKaye KR, Stauffer JR (1993) Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Mol Phyl Evol 4:420–432CrossRefGoogle Scholar
  29. Kocher TD, Conroy JA, McKaye KR, Stauffer JR, Lockwood SF (1995) Evolution of NADH Dehydrogense Subunit 2 in East African cichlid fish. Mol Phylogenet Evol 4:420–432CrossRefPubMedGoogle Scholar
  30. Kocher TD, Fernald R, Hofmann H, Meyer A, Okada N, Penman D, Seehausen O (2004) Genome sequence of a cichlid fish: the Nile tilapia (Oreochromis niloticus). Proposal submitted to the JGI Community Sequencing Program by the Cichlid Genome Consortium. Available at:
  31. Koepfli K-P, Wayne RK (2003) Type I STS markers are more informative than cytochrome b in phylogenetic reconstruction of the Mustilidae (Mammalia:Carnivora). Syst Biol 52:571–593CrossRefPubMedGoogle Scholar
  32. Kornfield I, Smith PF (2000) African cichlid fish: model systems for evolutionary biology. Annu Rev Ecol Syst 31:163–196CrossRefGoogle Scholar
  33. Li W-H (1997) Molecular evolution. Sinauer Associates, Sunderland, MAGoogle Scholar
  34. Lippitsch E (1995) Scale and squamation character polarity and phyletic assessment in the family Cichlidae. J Fish Biol 47:91–106CrossRefGoogle Scholar
  35. Lippitsch E (1998) Phylogenetic study of cichlid fish in Lake Tanganyika: a lepidological approach. J Fish Biol 53:752–766CrossRefGoogle Scholar
  36. Mayer WE, H. T, Klein J (1998) Phylogeny of African cichlid fish as revealed by molecular markers. Heredity 80:702–714PubMedGoogle Scholar
  37. Meyer A (1993a) Phylogenetic relationships and evolutionary processes in East African cichid fish TREE 8:279–284Google Scholar
  38. Meyer A (1993b) Evolution of mitochondrial DNA in fish. In: Hochachka PW, Mommsen TP (eds) Molecular biology frontiers, biochemistry and molecular biology of fish. Elsevier Science, Amsterdam, pp 1–38Google Scholar
  39. Moran P, Kornfield I (1995) Were population bottlenecks associated with radiation of the mbuna species flock (Teleostei: Cichlidae) of Lake Malawi? Mol Biol Evol 12:1085–1093Google Scholar
  40. Nagl S, Tichy H, Mayer WE, Takahata N, Klein. J (1998) Persistence of neutral polymorphisms in Lake Victoria cichlid fish. Proc Natl Acad Sci USA 95:14238–14243CrossRefPubMedGoogle Scholar
  41. Nishida M (1991) Lake Tanganyika as an evolutionary reservoir of old lineages of East African fish: inferring form allozymes data. Experientia 47:974–979CrossRefGoogle Scholar
  42. Nishida M (1997) Phylogenetic relationships and evolution of Lake Tanganyika cichlids: a molecular perspective. In: Kawanabe H, Hori M, Nagoshi M (eds) Fish communities in Lake Tanganyika. Kyoto University Press, Kyoto, pp 1–24Google Scholar
  43. Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67CrossRefPubMedGoogle Scholar
  44. Poll M (1956) Resultats scientifique. Exploration hydrobiologique belge au lac Tanganyika (1946–1947). Poissons Cichlidae. Institut Royal des Sciences Naturelles de Belgique, BrusselsGoogle Scholar
  45. Poll M (1986) Classification des Cichlidae du lac Tanganyika—Tribus, genres et especes. Académie royale de Belgique, Memoires de la Classe des Sciences, coll. in 8°, 2 ème série, T. XVL, fascicule ZGoogle Scholar
  46. Posada D, Crandall KA (1998) ModelTest: Testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  47. Rodriguez F, Oliver JF, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitutions. J Theor Biol 142:485–501PubMedGoogle Scholar
  48. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  49. Rüber L, Meyer A, Sturmbauer C, Verheyen E (2001) Population structure in two sympatric species of Lake Tanganyika cichlid tribe Eretmodini: evidence for introgression. Mol Ecol 10:1207–1225CrossRefPubMedGoogle Scholar
  50. Rüber L, Britz R, Tan HH, Ng PKL, Zardoya R (2004) Evolution of mouthbrooding and life-history correlates in the fighting fish genus Betta. Evolution 58:799–813PubMedGoogle Scholar
  51. Russo CA, Takezaki N, Nei M (1996) Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Mol Biol Evol 13:525–536PubMedGoogle Scholar
  52. Salzburger W, Meyer A (2004) The species flocks of East African cichlid fish: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91:277–290CrossRefPubMedGoogle Scholar
  53. Salzburger W, Meyer A, Baric S, Verheyen E, Stumbauer C (2002a) Phylogeny of the Lake Tanganyika Cichlid species flock and its relationship to the central and East African Haplochromine cichlid fish faunas. Syst Biol 51:113–135CrossRefGoogle Scholar
  54. Salzburger W, Baric S, Sturmbauer C (2002b) Speciation via introgressive hybridization in East African cichlids? Mol Ecol 11:619CrossRefGoogle Scholar
  55. Salzburger W, Mack T, Verheyen E, Meyer A (2005) Out of Tanganyika: Genesis, explosive speciation, key innovations and phylogeography of the haplochromine cichlid fish. BMC Evol Biol 5:17CrossRefPubMedGoogle Scholar
  56. Santini S, Boore JL, Meyer A (2003) Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genet Res 13:1111–1122Google Scholar
  57. Schelly RC, Stiassny MLJ (2004) Revision of the congo river Lamprologus Schilthuis, 1891 (Teleostei: Cichlidae), with descriptions of two new species. Am Mus Nov 3451:1–40CrossRefGoogle Scholar
  58. Schelly R, Salzburger W, Koblmüller S, Duftner N, Sturmbauer C (2005) Phylogenetic relationships of the lamprologine cichlid genus Lepidiolamprologus (Teleostei: Perciformes) based on mitochondrial and nuclear sequences, suggesting introgressive hybridization. MPE (in press)Google Scholar
  59. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504CrossRefPubMedGoogle Scholar
  60. Seehausen O, (2004) Hybridization and adaptive radiation. TREE 19:198–207Google Scholar
  61. Seehausen O, Koetsier E, Schneider MV, Chapman LJ, Chapman CA, Knight ME, Turner GF, van Alphen JJM, Bills R (2003) Nuclear markers reveal unexpected genetic variation and a Congolese/Nilotic origin of the Lake Victoria cichlid species flock. Proc Roy Soc Lond 270:129–137CrossRefGoogle Scholar
  62. Shaw PW, Turner GF, Idid MR, Robinson RL, Carvalho GR (2000) Genetic population structure indicates sympatric speciation of Lake Malawi pelagic cichlids. Proc Roy Soc Lond B 267:2273–2280CrossRefGoogle Scholar
  63. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116Google Scholar
  64. Snoeks J, Rüber L, Verheyen E (1994) The Tanganyika problem: comments on the taxonomy and distribution patterns of its cichlid fauna. Adv Limnol 44:355–372Google Scholar
  65. Stiassny MLJ, (1990) Tylochromis, relationships and the phylogenetic status of the African Cichlidae. Am Mus Novit 1993:1–14Google Scholar
  66. Stiassny MLJ, Meyer A (1999) Cichlids of the African rift lakes. Sci Am February:44–49Google Scholar
  67. Strimmer K, von Haeseler A (1996) Quartet puzzling: A quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969Google Scholar
  68. Strimmer K, von Haeseler A (1997) Likelihood-mapping: A simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci USA 94:6815–6819CrossRefPubMedGoogle Scholar
  69. Sturmbauer C, Meyer A (1992) Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fish. Nature 358:578–581CrossRefPubMedGoogle Scholar
  70. Sturmbauer C, Meyer A (1993) Mitochondrial phylogeny of the endemic mouthbrooding lineages of cichlid fish of Lake Tanganyika, East Africa. Mol Biol Evol 10:751–768PubMedGoogle Scholar
  71. Sturmbauer CE, Verheyen E, Meyer A (1994) Mitochondrial phylogeny of the Lamprologini, the major substrate spawning lineage of cichlid fish from Lake Tanganyika in Eastern Africa. Mol Biol Evol 10:751–768Google Scholar
  72. Sturmbauer C, Hainz U, Baric S, Verheyen E, Salzburger W (2003) Evolution of the tribe Tropheini form Lake Tanganyika: synchronized explosive speciation producing multiple evolutionary parallelism. Hydrobiologia 500:51–64CrossRefGoogle Scholar
  73. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4.0. Sinnauer Associates, Sunderland, MAGoogle Scholar
  74. Swofford DL, Sullivan J (2003) Phylogeny inference based on parsimony and other methods: Practice. In: Salemi M, Vandamme A-M (eds) The phylogenetic handbook, a practical approach to DNA and protein phylogeny. Cambridge University Press, Cambridge, pp 182–206Google Scholar
  75. Takahashi K, Terai Y, Nishida M, Okada N (1998) A novel family of short interspersed repetitive elements (SINEs) from cichlids: the patterns of insertion of SINEs at orthologous loci support the proposed monophyly of four major groups of cichlid fish in Lake Tanganyika. Mol Biol Evol 15:391–407PubMedGoogle Scholar
  76. Takahashi K, Terai Y, Nishida M, Okada N (2001) Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fish in Lake Tanganyika as revealed by analysis of the insertion of retrotransposons. Mol Biol Evol 18:2057–2066PubMedGoogle Scholar
  77. Takahashi T (2003) Systematics of Tanganyikan cichlid fish (Teleostei: Perciformes). Ichtyological Res 50:367–382CrossRefGoogle Scholar
  78. Terai Y, Takezaki N, Mayer WE, Tichy H, Takahata N, Klein J, Okada N (2004) Phylogenetic relationships among east african Haplochromine fish as revealed by short interspersed elements (SINEs). J Mol Evol 58:64–78CrossRefPubMedGoogle Scholar
  79. Turner GF, Seehausen O, Knight ME, Allender CJ, Robinson RL (2001) How many species of cichlid fish are there in African lakes? Mol Ecol 10:793–806CrossRefPubMedGoogle Scholar
  80. Van der Meijden A, Vences M, Meyer A (2004) Novel Phylogenetic relationships of the enigmatic brevicipitine and scaphiophrynine toads as revealed by sequences from the nuclear RAG1 gene. Proc Roy Soc B (Suppl) 271:S378–S381Google Scholar
  81. Venkatesh B, Ning Y, Brenner S (1999) Late changes in spliceosomal introns define clades in vertebrate evolution. Proc Natl Acad Sci USA 96:10267–71CrossRefPubMedGoogle Scholar
  82. Verheyen E, Salzburger W, Snoeks J, Meyer A (2003) Origin of the superflock of cichlid fish from Lake Victoria East Africa. Science 300:325–329CrossRefPubMedGoogle Scholar
  83. Wiens JJ (2003) Missing data, incomplete taxa, and phylogenetic accuracy. Syst Biol 52:528–538PubMedGoogle Scholar
  84. Zardoya R, Meyer A (1996) Phylogenetic performance of mitochondrial protein–coding genes in resolving relationships among vertebrates. Mol Biol Evol 13:933–942PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Céline Clabaut
    • 1
  • Walter Salzburger
    • 1
    • 2
  • Axel Meyer
    • 1
    Email author
  1. 1.Lehrstuhl für Zoologie und Evolutionsbiologie, Department of BiologyUniversity of KonstanzKonstanzGermany
  2. 2.Center for Junior Research FellowsUniversity of KonstanzKonstanzGermany

Personalised recommendations