Journal of Molecular Evolution

, Volume 61, Issue 1, pp 12–22 | Cite as

Complete Mitochondrial DNA Sequences of Six Snakes: Phylogenetic Relationships and Molecular Evolution of Genomic Features

Article

Abstract

Complete mitochondrial DNA (mtDNA) sequences were determined for representative species from six snake families: the acrochordid little file snake, the bold boa constrictor, the cylindrophiid red pipe snake, the viperid himehabu, the pythonid ball python, and the xenopeltid sunbeam snake. Thirteen protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 control regions were identified in these mtDNAs. Duplication of the control region and translocation of the tRNALeu gene were two notable features of the snake mtDNAs. The duplicate control regions had nearly identical nucleotide sequences within species but they were divergent among species, suggesting concerted sequence evolution of the two control regions. In addition, the duplicate control regions appear to have facilitated an interchange of some flanking tRNA genes in the viperid lineage. Phylogenetic analyses were conducted using a large number of sites (9570 sites in total) derived from the complete mtDNA sequences. Our data strongly suggested a new phylogenetic relationship among the major families of snakes: ((((Viperidae, Colubridae), Acrochordidae), (((Pythonidae, Xenopeltidae), Cylindrophiidae), Boidae)), Leptotyphlopidae). This conclusion was distinct from a widely accepted view based on morphological characters in denying the sister-group relationship of boids and pythonids, as well as the basal divergence of nonmacrostomatan cylindrophiids. These results imply the significance to reconstruct the snake phylogeny with ample molecular data, such as those from complete mtDNA sequences.

Keywords

Reptilia Squamata Serpentes Mitochondrial genome Polymerase chain reaction Molecular phylogeny Control region Concerted evolution Gene rearrangement tRNA gene 

Notes

Acknowledgments

We thank Mr. K. Yagi, Drs. M. Nishida and D. Wake, Remix Peponi Co., and the Museum of Vertebrate Zoology, University of California at Berkeley, for providing animal samples. We also thank Dr. T. Nishikawa and Nagoya University Museum for the curation of our specimens and Ms. C. Aoki for her excellent experimental assistance. Gratitude is extended to Dr. H. Shimodaira, two anonymous reviewers, and the Associate Editor for valuable comments on the phylogenetic tests. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nos. 12640680 and 14540641).

References

  1. Adachi J, Hasegawa M (1996) MOLPHY version 2.3: programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs, No 28. Institute of Statistical Mathematics, TokyoGoogle Scholar
  2. Asakawa, S, Kumazawa, Y, Araki, T, Himeno, H, Miura, K, Watanabe, K 1991Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomesJ Mol Evol32511520PubMedGoogle Scholar
  3. Boore, JL 1999Animal mitochondrial genomesNucleic Acids Res2717671780CrossRefPubMedGoogle Scholar
  4. Brown, WM, Prager, EM, Wang, A, Wilson, AC 1982Mitochondrial DNA sequences of primates: tempo and mode of evolutionJ Mol Evol18225239CrossRefPubMedGoogle Scholar
  5. Cadle, JE 1988Phylogenetic relationship among advanced snakes: a molecular perspectiveUniv Calif Publ Zool119177Google Scholar
  6. Clayton, DA 1992Transcription and replication of animal mitochondrial DNAsInt Rev Cytol141217232PubMedGoogle Scholar
  7. Felsenstein, J 1981Evolutionary trees from DNA sequences: a maximum likelihood approachJ Mol Evol17368376CrossRefPubMedGoogle Scholar
  8. Forstner, MRJ, Davis, SK, Arévalo, E 1995Support for the hypothesis of anguimorph ancestry for the suborder serpentes from phylogenetic analysis of mitochondrial DNA sequencesMol Phylogenet Evol493102CrossRefPubMedGoogle Scholar
  9. Heise, PJ, Maxson, LR, Dowling, HG, Hedges, SB 1995Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genesMol Biol Evol12259265PubMedGoogle Scholar
  10. Hillis, DM, Moritz, C 1990

    An overview of applications of molecular systematics

    Hillis, DMMoritz, C eds. Molecular systematicsSinauer AssociatesSunderland, MA
    Google Scholar
  11. Hoffstetter, R 1955

    Squamates de type moderne

    Piveteau, J eds. Traité de Paléontologie 5MassonParis606662
    Google Scholar
  12. Huelsenbeck, JP, Ronquist, FR 2001MRBAYES: Bayesian inference of phylogenetic treesBioinformatics17754755CrossRefPubMedGoogle Scholar
  13. Iwabe N, Hara Y, Kumazawa Y, Shibamoto K, Saito Y, Miyata T, Katoh K (2005) Sister group relationship of turtles to the bird-crocodilian clade revealed by nuclear DNA-coded proteins. Mol Biol Evol 22:810–813CrossRefPubMedGoogle Scholar
  14. Janke, A, Erpenbeck, D, Nilsson, M, Arnason, U 2001The mitochondrial genomes of the iguana (Iguana iguana) and the caiman (Caiman crocodylus): implications for amniote phylogenyProc R Soc Lond B268623631CrossRefGoogle Scholar
  15. Kishino, H, Hasegawa, M 1989Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoideaJ Mol Evol29170179PubMedGoogle Scholar
  16. Kumazawa, Y 2004Mitochondrial DNA sequences of five squamates: phylogenetic affiliation of snakesDNA Res11137144PubMedGoogle Scholar
  17. Kumazawa, Y, Endo, H 2004Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangementsDNA Res11115125PubMedGoogle Scholar
  18. Kumazawa, Y, Nishida, M 1993Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogeneticsJ Mol Evol37380398CrossRefPubMedGoogle Scholar
  19. Kumazawa, Y, Nishida, M 1995Variations in mitochondrial tRNA gene organization of reptiles as phylogenetic markersMol Biol Evol12759772PubMedGoogle Scholar
  20. Kumazawa, Y, Ota, H, Nishida, M, Ozawa, T 1996Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene clusterMol Biol Evol1312421254PubMedGoogle Scholar
  21. Kumazawa, Y, Ota, H, Nishida, M, Ozawa, T 1998The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regionsGenetics150313329PubMedGoogle Scholar
  22. Lee, MSY 2000Soft anatomy, diffuse homoplasy, and the relationship of lizards and snakesZool Scripta29101130CrossRefGoogle Scholar
  23. Lee, MSY, Scanlon, JD 2002Snake phylogeny based on osteology, soft anatomy and ecologyBiol Rev77333401CrossRefPubMedGoogle Scholar
  24. Levinson, G, Gutman, GA 1987Slipped-strand mispairing: a major mechanism for DNA sequence evolutionMol Biol Evol4203221PubMedGoogle Scholar
  25. McDowell, SB, Bogert, CM 1954The systematic position of Lantltanotus and the affinities of the anguimorphan lizardsBull Am Mus Nat Hist1051142Google Scholar
  26. Pääbo, S, Irwin, DM, Wilson, AC 1990DNA damage promotes jumping between templates during enzymatic amplificationJ Biol Chem26547184721PubMedGoogle Scholar
  27. Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowskl G (1991) The simple fool’s guide to PCR. Version 2.0. Department of Zoology and Kewalo Marine Laboratory. University of Hawaii, HonoluluGoogle Scholar
  28. Posada, D, Crandall, KA 1998Modeltest: testing the model of DNA substitutionBioinformatics14817818CrossRefPubMedGoogle Scholar
  29. Rage, JC 1987

    Fossil history

    Seigel, RACollins, JTNovak, SS eds. Snakes: Ecology and evolutionary biologyMacmillanNew York5176
    Google Scholar
  30. Rest, JS, Ast, JC, Austin, CC, Waddell, PJ, Tibbetts, EA, Hay, JM, Mindell, DP 2003Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genomeMol Phylogenet Evol29289297CrossRefPubMedGoogle Scholar
  31. Rieppel, O 1979A cladistic classification of primitive snakes based on skull structureZ Zool Syst Evolforsch17140150Google Scholar
  32. Rieppel, O, Zaher, H, Tchernov, E, Polcyn, MJ 2003The anatomy and relationships of Haasiophis terrasanctus, a fossil snake with well-developed hind limbs from the mid-Cretaceous of the Middle EastJ Paleont77536558Google Scholar
  33. Saccone, C, Gissi, C, Reyes, A, Larizza, A, Sbisà, E, Pesole, G 2002Mitochondrial DNA in metazoa: degree of freedom in a frozen eventGene286312CrossRefPubMedGoogle Scholar
  34. Saitou, N, Nei, M 1987The neighbor-joining method: a new method for reconstructing phylogenetic treesMol Biol Evol4406425PubMedGoogle Scholar
  35. Shimodaira, H, Hasegawa, M 1999Multiple comparisons of log-likelihoods with applications to phylogenetic inferenceMol Biol Evol1611141116Google Scholar
  36. Slowinski, JB, Lawson, R 2002Snake phylogeny: evidence from nuclear and mitochondrial genesMol Phylogenet Evol24194202CrossRefPubMedGoogle Scholar
  37. Strimmer, K, Haeseler, A 1996Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologiesMol Biol Evol13964969Google Scholar
  38. Swofford, DL 2003PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4Sinauer Associates Sunderland, MA Google Scholar
  39. Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis toolsNucleic Acids Res2548764882CrossRefPubMedGoogle Scholar
  40. Uetz P (2003) The EMBL reptile database: http://www.embl-heidelberg.de/uetz/Living Reptiles.html
  41. Underwood G (1967) A contribution to the classification of snakes. British Museum of Natural History, LondonGoogle Scholar
  42. Underwood, G 1976

    A systematic analysis of boid snakes

    Bellairs, Ad’’ACox, CB eds. Morphology and biology of reptiles. Linn Soc Symp Ser No. 3Academic PressLondon151175
    Google Scholar
  43. Vidal, N, David, P 2004New insights into the early history of snakes inferred from two nuclear genesMol Phylogenet Evol31783787CrossRefPubMedGoogle Scholar
  44. Vidal, N, Hedges, SB 2002Higher-level relationships of snakes inferred from four nuclear and mitochondrial genesCR Biologies325977985CrossRefGoogle Scholar
  45. Wilcox, TP, Zwickl, DJ, Heath, TA, Hillis, DM 2002Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic supportMol Phylogenet Evol25361371CrossRefPubMedGoogle Scholar
  46. Wolstenholme, DR 1992Animal mitochondrial DNA: structure and evolutionInt Rev Cytol141173216PubMedGoogle Scholar
  47. Zardoya, R, Meyer, A 2000Mitochondrial evidence on the phylogenetic position of caecilians (Amphibia: Gymnophiona)Genetics155765775PubMedGoogle Scholar
  48. Zug, GR, Vitt, LJ, Caldwell, JP 2001HerpetologyAcademic PressSan DiegoGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Biological Science, School of ScienceNagoya UniversityNagoya Japan
  2. 2.Division of Material Science, Graduate School of ScienceNagoya UniversityNagoya Japan

Personalised recommendations