Journal of Molecular Evolution

, Volume 60, Issue 2, pp 257–267 | Cite as

Evolution of Plant-Like Crystalline Storage Polysaccharide in the Protozoan Parasite Toxoplasma gondii Argues for a Red Alga Ancestry

  • Alexandra Coppin
  • Jean-Stéphane Varré
  • Luc Lienard
  • David Dauvillée
  • Yann Guérardel
  • Marie-Odile Soyer-Gobillard
  • Alain Buléon
  • Steven Ball
  • Stanislas Tomavo


Single-celled apicomplexan parasites are known to cause major diseases in humans and animals including malaria, toxoplasmosis, and coccidiosis. The presence of apicoplasts with the remnant of a plastid-like DNA argues that these parasites evolved from photosynthetic ancestors possibly related to the dinoflagellates. Toxoplasma gondii displays amylopectin-like polymers within the cytoplasm of the dormant brain cysts. Here we report a detailed structural and comparative analysis of the Toxoplasma gondii, green alga Chlamydomonas reinhardtii, and dinoflagellate Crypthecodinium cohnii storage polysaccharides. We show Toxoplasma gondii amylopectin to be similar to the semicrystalline floridean starch accumulated by red algae. Unlike green plants or algae, the nuclear DNA sequences as well as biochemical and phylogenetic analysis argue that the Toxoplasma gondii amylopectin pathway has evolved from a totally different UDP-glucose-based metabolism similar to that of the floridean starch accumulating red alga Cyanidioschyzon merolae and, to a lesser extent, to those of glycogen storing animals or fungi. In both red algae and apicomplexan parasites, isoamylase and glucan–water dikinase sequences are proposed to explain the appearance of semicrystalline starch-like polymers. Our results have built a case for the separate evolution of semicrystalline storage polysaccharides upon acquisition of photosynthesis in eukaryotes.


T. gondii Plant-like metabolism Amylopectin Floridean starch Evolutionary origin Glucan water dikinase Isoamylase Rhodophyte 



For comments, logistical support, and invaluable technical assistance in the field and lab, we thank Michael Kibe, Marléne Mortuaire, Hervé Moreau, Christian Slomianny, Emmanuel Maes, Frédéric Chirat, Yves Leroy, Florence Dzierszinski, Brigitte Bouchet, and Bruno Pontoire. We acknowledge the Toxoplasma Genome Sequencing Consortium for making available the genome database: Preliminary genomic and/or cDNA sequence data were accessed via and/or Genomic data were provided by The Institute for Genomic Research (supported by NIH Grant AI05093), and by the Sanger Center (Wellcome Trust). EST sequences were generated by Washington University (NIH Grant 1R01AI045806-01A1). This research was funded by the Centre National de la Recherche Scientifique (CNRS) through the Action Thématique Incitative sur Programme et Equipe (ATIPE), the Programme Inter-organisme de Microbiologie Fondamentale, and the Agence Nationale de la Recherche sur le Sida (ANRS).


  1. Ball, SG, Morell, MK 2003From bacterial glycogen to starch: understanding the biogenesis of the plant starch granuleAnnu Rev Plant Biol54207233Google Scholar
  2. Ballicora, AA, Iglesias, MA, Preiss, J 2003ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesisMicrobiol Mol Biol Rev67213225Google Scholar
  3. Buléon, A, Gallant, D-J, Bouchet, B, Mouille, G, D’Hulst, C, Kossman, J, Ball, SG 1997Starches from A to C. Chlamydomonas reinhardtii as a model microbial system to investigate the biosynthesis of the plant amylopectin crystalPlant Physiol115949957Google Scholar
  4. Cai, X, Fuller, AL, McDougald, LR, Zhu, G 2003Apicoplast genome of the coccidian Eimeria tenellaGene3213946Google Scholar
  5. Cavalier-Smith, T 1999Principles of protein targeting in secondary symbiogenesis: euglenoid, dinoflagellate and sporozoan plastid origins and the eukaryote family treeJ Euk Microbiol46347366Google Scholar
  6. Colleoni, C, Dauvillee, D, Mouille, G, Buleon, A, Gallant, D, Bouchet, B, Morell, M, Samuel, M, Delrue, B, d’Hulst, C, Bliard, C, Nuzillard, JM, Ball, S 1999Genetic and biochemical evidence for the involvement of alpha-1, 4-glucanotransferases in amylopectin synthesisPlant Physiol1209931004Google Scholar
  7. Douglas, SE, Penny, SL 1999The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algaeJ Mol Evol48236244PubMedGoogle Scholar
  8. Dzierszinski, F, Popescu, O, Toursel, C, Slomianny, C, Yahiaoui, B, Tomavo, S 1999The protozoan parasite Toxoplasma gondii expresses two functional plant-like glycolytic enzymes. Implications for evolutionary origin of apicomplexansJ Biol Chem2742488824895Google Scholar
  9. Dzierszinski, F, Mortuaire, M, Dendouga, N, Popescu, O, Tomavo, S 2001Differential expression of two plant-like enolases with distinct enzymatic and antigenic properties during stage conversion of the protozoan parasite Toxoplasma gondiiJ Mol Biol30910171027CrossRefPubMedGoogle Scholar
  10. Fast, NM, Kissinger, JC, Roos, DS, Keeling, PJ 2001Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastidsMol Biol Evol18418426PubMedGoogle Scholar
  11. Funes, S, Davidson, E, Reyes-Prieto, A, Magallon, S, Herion, P, King, MP, Gonzalez-Halphen, D 2002A green algal apicoplast ancestorScience2982155Google Scholar
  12. Greenberg, E, Preiss, J 1964The occurrence of adenosine diphosphate glucose: glycogen transglucosylase in bacteriaJ Biol Chem23943144315Google Scholar
  13. Harris, JR, Adrian, M, Petry, F 2004Amylopectin: a major component of the residual body in Cryptosporidium parvum oocystsParasitology128269282Google Scholar
  14. Henrissat, B, Deleury, E, Coutinho, PM 2002Glycogen metabolism loss: a common marker of parasitic behaviour in bacteria?Trends Genet18437440Google Scholar
  15. Karkhanis, YD, Allocco, JJ, Schmatz, DM 1993Amylopectin synthase of Eimeria tenella: identification and kinetic characterizationJ Euk Microbiol40594598Google Scholar
  16. Köhler, S, Delwiche, CF, Denny, PW, Tilney, LG, Webster, P, Wilson, RJ, Palmer, JD, Roos, DS 1997A plastid of probable green algal origin in apicomplexan parasitesScience27514851489Google Scholar
  17. Libessart, N, Maddelein, ML, Koornhuyse, N, Decq, A, Delrue, B, Mouille, G, D’Hulst, C, Ball, S 1995Storage, photosynthesis, and growth: the conditional nature of mutations affecting starch synthesis and structure in ChlamydomonasPlant Cell711171127Google Scholar
  18. Luft, BJ, Remington, JS 1988AIDS commentary. Toxoplasmic encephalitisJ Infect Dis15716Google Scholar
  19. Luft, BJ, Remington, JS 1992Toxoplasmic encephalitis in AIDSClin Infect Dis15211222PubMedGoogle Scholar
  20. Marechal, E, Cesbron-Delauw, MF 2001The apicoplast: a new member of the plastid familyTrends Plant Sci6200205Google Scholar
  21. Matsuzaki, M, Misumi, O, Shin, IT, Maruyama, S,  et al. 2004Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10DNature428653657Google Scholar
  22. McFadden, GI, Reith, ME, Munholland, J, Lang-Unnasch, N 1996Plastid in human parasitesNature381482Google Scholar
  23. Nyvall, P, Pelloux, J, Davies, HV, Pedersen, M, Viola, R 1999Purification and characterisation of a novel starch synthase selective for uridine 5′-diphosphate glucose from the red alga Gracilaria tenuistipitataPlanta209143152Google Scholar
  24. Perret, E, Davoust, J, Albert, M, Besseau, L, Soyer-Gobillard, M-O 1993Microtubule organization during the cell cycle of the primitive eukaryote dinoflagellate Crypthecodinium cohniiJ Cell Sci104639651Google Scholar
  25. Ral, JP, Derelle, E, Ferraz, C, Wattebled, F, Farinas, B, Corellou, F, Buléon, A, Slomianny, MC, Delvalle, D, d’Hulst, C, Rombauts, S, Moreau, H, Ball, S 2004Starch division and partitioning a mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauriPlant Physiol3633333340Google Scholar
  26. Recondo, E, Leloir, L 1961Adenosine diphosphate glucose and starch biosynthesisBiochem Biophys Res Commun68588Google Scholar
  27. Ritte, G, Lloyd, JR, Eckermann, N, Rottmann, A, Kossmann, J, Steup, M 2002The starch-related R1 protein is an alpha-glucan, water dikinaseProc Natl Acad Sci USA9971667171Google Scholar
  28. Ryley, JF, Bentley, M, Manners, DJ, Stark, JR 1969Amylopectin, the storage polysaccharide of the coccidian Eimeria brunetti and E. tenellaJ Parasitol55839845Google Scholar
  29. Seeber, F 1997Consensus sequence of translational initiation sites from Toxoplasma gondii genesParasitol Res83309311Google Scholar
  30. Thompson, JD, Higgins, DG, Gibson, TJ 1994ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res2246734680PubMedGoogle Scholar
  31. Tomavo, S 2001The differential expression of multiple isoenzyme forms during stage conversion of Toxoplasma gondii: an adaptive developmental strategyInt J Parasitol3110231031CrossRefPubMedGoogle Scholar
  32. Viola, R, Nyvall, P, Pedersen, M 2001The unique features of starch metabolism in red algaeProc R Soc Lond B Biol Sci26814171422Google Scholar
  33. Waller, RF, Keeling, PJ, Dooren, GG, McFadden, GI 2003Comment on a green algal apicoplast ancestorScience30149Google Scholar
  34. Wilson, RJM, Denny, PW, Preiser, PR, Rangachari, K, Roberts, K, Roy, A, Whyte, A, Strath, M, Moore, DJ, Moore, PW, Williamson, DH 1996Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparumJ Mol Biol261155172CrossRefPubMedGoogle Scholar
  35. Zhang, Z, Green, BR, Cavalier-Smith, T 1999Single gene circles in dinoflagellate chloroplast genomesNature400155159Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Alexandra Coppin
    • 1
  • Jean-Stéphane Varré
    • 2
  • Luc Lienard
    • 1
  • David Dauvillée
    • 1
  • Yann Guérardel
    • 1
  • Marie-Odile Soyer-Gobillard
    • 3
  • Alain Buléon
    • 4
  • Steven Ball
    • 1
  • Stanislas Tomavo
    • 1
  1. 1.Laboratoire de Chimie BiologiqueUniversité des Sciences et Technologies de LilleVilleneuve d’Ascq cedexFrance
  2. 2.Laboratoire d’Informatique Fondamentale de LilleUniversité des Sciences et Technologies de LilleVilleneuve d’Ascq cedexFrance
  3. 3.Laboratoire Arago, Observatoire océanologiqueUniversité Paris VIBanyuls-sur-mer cedexFrance
  4. 4.Institut National de la Recherche Agronomique Rue de la GéraudiéreNantes cedex 03France

Personalised recommendations