Journal of Molecular Evolution

, Volume 60, Issue 6, pp 706–715 | Cite as

First Sequenced Mitochondrial Genome from the Phylum Acanthocephala(Leptorhynchoides thecatus) and Its Phylogenetic Position Within Metazoa

  • Michelle L. Steinauer
  • Brent B. Nickol
  • Richard Broughton
  • Guillermo Ortí
Article

Abstract

The complete sequence of the mitochondrial genome of Leptorhynchoides thecatus (Acanthocephala) was determined, and a phylogenetic analysis was carried out to determine its placement within Metazoa. The genome is circular, 13,888 bp, and contains at least 36 of the 37 genes typically found in animal mitochondrial genomes. The genes for the large and small ribosomal RNA subunits are shorter than those of most metazoans, and the structures of most of the tRNA genes are atypical. There are two significant noncoding regions (377 and 294 bp), which are the best candidates for a control region; however, these regions do not appear similar to any of the control regions of other animals studied to date. The amino acid and nucleotide sequences of the protein coding genes of L. thecatus and 25 other metazoan taxa were used in both maximum likelihood and maximum parsimony phylogenetic analyses. Results indicate that among taxa with available mitochondrial genome sequences, Platyhelminthes is the closest relative to L. thecatus, which together are the sister taxon of Nematoda; however, long branches and/or base composition bias could be responsible for this result. The monophyly of Ecdysozoa, molting organisms, was not supported by any of the analyses. This study represents the first mitochondrial genome of an acanthocephalan to be sequenced and will allow further studies of systematics, population genetics, and genome evolution.

Keywords

Acanthocephala Leptorhynchoidesthecatus Mitogenomics Metazoa Phylogeny Parasite 

Notes

Acknowledgment

Partial funding for this project was provided by the University of Nebraska—Lincoln Initiative for Ecological and Evolutionary Analysis. We would also like to thank members of the Ortí lab at the University of Nebraska—Lincoln for their helpful comments on the manuscript.

References

  1. Abouheif, E, Zardoya, R, Meyer, A 1998Limitations of metazoan 18S rrnA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of Cambrian ExplosionJ Mol Evol47394405PubMedGoogle Scholar
  2. Adachi, J, Hasegawa, M 1996Model of amino acid substitution in protein encoded by mitochondrial DNAJ Mol Evol42459468PubMedGoogle Scholar
  3. Aguinaldo, AMA, Tuberville, JM, Linford, LS, Rivera, MC, Garey, JR, Raff, RA, Lake, JA 1997Evidence for a clade of nematodes, arthropods, and other moulting animalsNature387489493CrossRefPubMedGoogle Scholar
  4. Altschul, TL, Madden, SF, Schäffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ 1997Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Res2533893402CrossRefPubMedGoogle Scholar
  5. Benson, G 1999Tandem repeats finder: a program to analyze DNA sequencesNucleic Acids Res27573580CrossRefPubMedGoogle Scholar
  6. Blair, JE, Ikeo, K, Gojobori, T, Hedges, SB 2002The evolutionary position of nematodesBMC Evol Biol217CrossRefPubMedGoogle Scholar
  7. Boore, JL 1999Animal mitochondrial genomesNucleic Acids Res2717671780CrossRefPubMedGoogle Scholar
  8. Boore, JL, Brown, WM 1998Big trees from little genomes mitochondrial gene order as a phylogenetic toolCurr Opin Genet Dev8668674CrossRefPubMedGoogle Scholar
  9. Bowles, J, Blair, D, McManus, DP 1992Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencingMol Biochem Parasitol54165174CrossRefPubMedGoogle Scholar
  10. Carranza, S, Baguñá, J, Riutort, M 1997Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequencesMol Biol Evol14485497PubMedGoogle Scholar
  11. Copley, RR, Aloy, P, Russell, RB, Telford, MJ 2004Systematic searches for molecular synapomorphies in model metazoan genomes give some support for Ecdysozoa after accounting for the idiosyncrasies of Caenorhabditis elegansEvolution Dec6164169CrossRefGoogle Scholar
  12. Rosa, R, Grenier, JK, Andreeva, T, Cook, CE, Adoutte, A, Akam, M, Caroll, SB, Balavoine, G 1999HOX genes in brachiopods and priapulids and protostome evolutionNature399772776CrossRefPubMedGoogle Scholar
  13. Felsenstein, J 1985Confidence limits on phylogenies: an approach using the bootstrapEvolution39783791Google Scholar
  14. Foster, PG, Jermiin, LS, Hickey, DA 1997Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondriaJ Mol Evol44282288PubMedGoogle Scholar
  15. Garey, JR, Schmidt-Rhaesa, A, Near, TJ, Nadler, SA 1998The evolutionary relationships of rotifers and acanthocephalansHydrobiologia387/3888391CrossRefGoogle Scholar
  16. Giribet, G 2002Current advances in the phylogenetic reconstruction of metazoan evolution. A new paradigm for the Cambrian explosionMol Phylogenet Evol24345357Google Scholar
  17. Giribet, G, Distel, DL, Polz, M, Sterrer, W, Wheeler, WC 2000Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cyclophora, Platyhelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphologySyst Biol49539562PubMedGoogle Scholar
  18. Helfenbein, KG, Brown, WM, Boore, JL 2001The complete mitochondrial genome of the articulate brachiopod Terebratalia transversaMol Biol Evol1817341744PubMedGoogle Scholar
  19. Herlyn, H, Piskurek, O, Schmitz, J, Ehlers, U, Zischler, H 2003The syndermatan phylogeny and the evolution of acanthocephalan endoparasitism as inferred from 18S rDNA sequencesMol Phylogenet Evol26155164Google Scholar
  20. Hillis, DM, Pollock, DD, McGuire, JA, Zwickl, DJ 2003Is sparse taxon sampling a problem for phylogenetic inference?Syst Biol52124126PubMedGoogle Scholar
  21. Hu, M, Chilton, NB, Gasser, RB 2002The mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda: Secernentea)Int J Parasitol32145158Google Scholar
  22. Le, TH, Blair, D, Agatsuma, T, Humair, PF, Campbell, NJH, Iwagami, M, Littlewood, DTJ, Peacock, B, Johnston, DA, Bartley, J, Rollinson, D, Herniou, EA, Zarlenga, DS, McManus, DP 2000Phylogenies inferred from mitochondrial gene orders—A cautionary tale from the parasitic flatwormsMol Biol Evol1711231125PubMedGoogle Scholar
  23. Lowe, TM, Eddy, SR 1997tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequenceNucleic Acids Res25955964PubMedGoogle Scholar
  24. Manuel, MM, Kruse, M, Müller, WEG, Le Parco, Y 2000The comparison of β-thymosin homologues among Metazoa supports an arthropod-nematode cladeJ Mol Evol51378381PubMedGoogle Scholar
  25. Morret, BME, Wang, LS, Warnow, T, Wyman, SK 2001New approaches for reconstructing phylogenies from gene order dataBioinformatics17S165S173PubMedGoogle Scholar
  26. Mushegian, AR, Garey, JR, Martin, J, Liu, LX 1998Large-scale taxonomic profiling of eukaryotic model organisms: A comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomesGenome Res8590598PubMedGoogle Scholar
  27. Nielsen, C 2001Animal Evolution: Interrelationships of the living phyla2Oxford University PressOxfordGoogle Scholar
  28. Noguchi, Y, Endo, K, Tajima, F, Ueshima, R 2000The mitochondrial genome of the brachiopod Laqueus rubellusGenetics155245259PubMedGoogle Scholar
  29. Ojala, D, Montoya, J, Attardi, G 1981tRNA punctuation model of RNA processing in human mitochondriaNature290470474CrossRefPubMedGoogle Scholar
  30. Okimoto, R, Macfarland, JL, Clary, DO, Wolstenholme, DR 1992The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suumGenetics130471498PubMedGoogle Scholar
  31. Posada, D, Crandall, KA 1998Modeltest: Testing the model of DNA substitutionBioinformatics14817818CrossRefPubMedGoogle Scholar
  32. Sambrook, JE, Fritsch, F, Maniatis, T 1989Molecular Cloning: A laboratory manual2Cold Spring Harbor Laboratory PressNew YorkGoogle Scholar
  33. Shimodaira, H, Hasegawa, M 1999Multiple comparisons of log-likelihoods with applications to phylogenetic inferenceMol Biol Evol1611141116Google Scholar
  34. Strimmer, K, Haeseler, A 1996Quartet puzzling: A quartet maximum likelihood method for reconstructing tree topologiesMol Biol Evol13964969Google Scholar
  35. Swofford, DL 2001PAUP*: Phylogenetic analysis using prarsimony (*and other methods), version 4.0b10Sinauer AssociatesSunderland, MAGoogle Scholar
  36. Nickisch-Rosenegk, M, Brown, WM, Boore, JL 2001Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: Gene arrangements indicate that Platyhelminths are eutrochozoansMol Biol Evol18721730PubMedGoogle Scholar
  37. Wang, DYC, Kumar, S, Hedges, SB 1999Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc R Soc LondB Biol Sci266163171Google Scholar
  38. Winnepenninckx, B, Backeljau, T, DeWachter, R 1995aPhylogeny of protostome worms derived from 18S rrnA sequencesMol Biol Evol12641649Google Scholar
  39. Winnepenninckx, B, Backeljau, T, Mackey, LY, Brooks, JM, DeWachter, R, Kumar, S, Garey, JR 1995b18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct cladesMol Biol Evol1211321137Google Scholar
  40. Wolstenholme, DR 1992Animal mitochondrial DNA: structure and evolutionInt Rev Cytol141173216Google Scholar
  41. Wolstenholme, DR, Macfarlane, JL, Okimoto, R, Clary, DO, J. Wahleithner,  A 1987Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode wormsProc Natl Acad Sci USA8413241328PubMedGoogle Scholar
  42. Zhang, DX, Hewitt, GM 1997Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studiesBiochem Syst Ecol2599120CrossRefGoogle Scholar
  43. Zrzavy, J, Mihulka, S, Kepka, P, Bezedek, A, Tietz, O 1998Phylogeny of Metazoa based on morphological and 18S ribosomal DNA evidenceCladistics14249285CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Michelle L. Steinauer
    • 1
  • Brent B. Nickol
    • 2
  • Richard Broughton
    • 3
  • Guillermo Ortí
    • 2
  1. 1.Department of BiologyUniversity of New Mexico, MSC 03 2020, 1 Univesity of New MexicoAlbuquerqueUSA
  2. 2.School of Biological SciencesUniversity of Nebraska—LincolnLincolnUSA
  3. 3.Oklahoma Biological Survey and Department of ZoologyUniversity of OklahomaNormanUSA

Personalised recommendations