Advertisement

Journal of Molecular Evolution

, Volume 60, Issue 6, pp 695–705 | Cite as

Reevaluation of the Evolutionary Position of Opalinids Based on 18S rDNA,and α- and β-Tubulin Gene Phylogenies

  • Akane Nishi
  • Ken-ichiro Ishida
  • Hiroshi Endoh
Article

Abstract

Opalinids are enigmatic endosymbiotic protists principally found in the large intestine of anuran amphibians. They are multinucleates and uniformly covered with numerous flagella (or cilia). Their appearance is somewhat similar to that of ciliates, leading to opalinid’s initial classification as ciliates, or later as protociliates. However, on the basis of their monomorphic nuclei, absence of a ciliate-like life cycle characterized by conjugation, and an interkinetal fission mode, opalinids were subsequently transferred in the zooflagellates. As several common ultrastructural characteristics shared with proteromonads were elucidated, in particular of the flagellar base, such as their double-stranded flagellar helix, an alliance with proteromonads was widely accepted. Thus, opalinids are currently favored to be placed in the class Opalinea, within the heterokont kingdom Chromista. However, the question of their classification has not been fully resolved, because of a lack of molecular information. Here, we report their phylogenetic position inferred from 18S rDNA, and α- and β-tubulin gene sequences. The 18S rDNA tree gives the opalinids an ancestral position in heterokonts, together with proteromonads, as suggested by the morphological studies. In great contrast, α- and β-tubulin gene analyses suggest an affiliation of opalinids to alveolates, not to heterokonts. However, the AU test implies that opalinids are not closely related with any of other three phyla in the alveolates, suggesting an occupation of an ancestral position within the alveolates. Based on the present molecular information, in particular rDNA phylogeny, and the ultrastructural character of the double helix common to heterokonts, we conclude that opalinids would have a common origin with heterokonts, although analyses based on two tubulin genes do not as yet completely deny a possible placement outside heterokonts. The ambiguity of the evolutionary position shown by the discrepancy between rDNA and tubulin genes phylogenies might reflect an early emergence of opalinids in ancestral chromalveolates, and an extreme specialization during a lengthy history of parasitism, as suggested by a long branch in the rDNA tree.

Keywords

Opalinids Heterokonts Alveolates Chromalveolates 18S rDNA Tubulin genes Opalina Protoopalina Cepedea 

Notes

Acknowledgments

We wish to express our gratitude to T.G. Doak for critical readings, corrections of the manuscript, and many helpful comments. We also thank H. Shimodaira for the AU test, D. Lynn, T. Cavalier-Smith, and Y. Inagaki for helpful and critical comments on this work, and anonymous reviewers and the associate editor for many suggestions useful in improving the manuscript.

References

  1. Bardele, CF 1981Functional and phylogenetic aspects of the ciliary membrane: a comparative freeze-fracture studyBioSystems14403421CrossRefPubMedGoogle Scholar
  2. Brugerolle, G, Joyon, L 1975Étude cytologique ultrastructurale des genres Proteromonas et Karotomorpha (Zoomastigophorea Proteromonadida GRASSÉ 1952)Protistologica11531546Google Scholar
  3. Calkins, GN 1933The biology of the protozoa2Lea & FebigerPhiladelphiaGoogle Scholar
  4. Cavalier-Smith, T 1991Cell diversification in heterotrophic flagellatesPatterson, DJLarsen, J eds. The biology of free-living heterotrophic flagellatesClarendon PressOxford113131Google Scholar
  5. Cavalier-Smith, T 1998A revised six-kingdom system of lifeBiol Rev73203266CrossRefPubMedGoogle Scholar
  6. Cavalier-Smith, T, Allsopp, MTEP, Chao, EE 1994Thraustochytrids are chromist, not fungi: 18S rRNA signatures of HeterokontaPhil Trans R Soc Lond B346387397Google Scholar
  7. Chen, TT 1948Chromosomes in Opalinidae (Protozoa Ciliata) with special reference to their behavior, morphology individually, diploidy, haploidy, and association with nucleoliJ Morph83281359CrossRefGoogle Scholar
  8. Corliss, JO 1955The opalinid infusorians: Flagellates or ciliates?J Protozool2107114Google Scholar
  9. Corliss, JO 1982Numbers of phyla of “protozoa” and other protists: new look at an old problemJ Protozool29482483Google Scholar
  10. Corliss, JO 1990Phylum Zoomastigina class OpalinataMargulis, LCorliss, JOMelkonian, MChapman, DJ eds. Handbook of protoctistaJones and BarlettBoston239245Google Scholar
  11. Delvinquier, BLJ, Patterson, DJ 1989The fine structure of the cortex of the Protoopalina australlis (Slopalinida, Opalinidae) from Litoria nasuta and Litoria inermis (Amphibia: Anura: Hylidae) in Queensland AustraliaJ Protozool37449455Google Scholar
  12. Delvinquier, BLJ, Patterson, DJ 2002Order SlopalinidaLee, JJLeedale, GFBradbury, P eds. An illustrated guide to the Protozoa2Society of ProtozoologistsLawrence, KS754759Google Scholar
  13. Fast, NM, Xue, L, Bingham, S, Keeling, PJ 2002Re-examining alveolate evolution using multiple protein molecular phylogeniesJ Eukaryot Microbiol493037PubMedGoogle Scholar
  14. Felsenstein, J 2002PHYLIP, phylogeny inference package. Version 3.6a3Department of Genome Sciences, University of WashingtonSeattleGoogle Scholar
  15. Guillou L, Chrétiennot-Dinet M-J, Boulben S, Moon der Staay SY, Vaulot D (1999) Symbiomonas scintillans gen et sp. nov. (Heterokonta):two new heterotrophic flagellates of Picoplanktonic size Protist 150:383–393Google Scholar
  16. Hanamura, K, Endoh, H 2001Binary fission and encystation of Opalina sp. in axenic mediumZool Sci18381387CrossRefGoogle Scholar
  17. Hara, Y 1934Studies on general morphology and neuromotor system of Protoopalina axonucleata Metcalf parasitizing in Rana nigromaculataBot Zool220152022[in Japanese]Google Scholar
  18. Hasegawa, M, Hashimoto, T, Adachi, J, Iwabe, N, Miyata, T 1993Early branchings in the evolution of eukaryotes: Ancient divergence of Entamoeba that lacks mitochondria revealed by protein sequence dataJ Mol Evol36380388CrossRefPubMedGoogle Scholar
  19. Honigberg, BM, Balamuth, W, Bovee, EC,  et al. 1964A revised classification of the phylum protozoaJ Protozool11720PubMedGoogle Scholar
  20. Karpov, SA 2000Ultrastructure of the aloricate bicosoecid Pseudobodo tremulans, with revision of the order BicosoecidaProtistologica1101109Google Scholar
  21. Karpov, SA, Sogin, ML, Silberman, JD 2001Rootlet homology, taxonomy, and phylogeny of bicosoecids based on 18S rRNA gene sequencesProtistologica23447Google Scholar
  22. Keeling, JP, Luker, MA, Palmer, JD 2000Evidence from beta-tubulin phylogeny that microsporidia evolved within the fungiMol Biol Evol172331PubMedGoogle Scholar
  23. Lake, JA 1994Reconstructing evolutionary trees from DNA and protein sequences: paralinear distancesProc Natl Acad Sci USA9114551459PubMedGoogle Scholar
  24. Leeuwenhoek, A 1683Cited in: Antony van Leeuwenhoek and his “little animals” (C Dobell)Rusell & RusellNew York2331958Google Scholar
  25. Maddison, WP, Maddison, DR 1999MACCLADE: Analysis of pylogeny and character evolution. Version 3.08SinauerSunderland, MAGoogle Scholar
  26. Metcalf, MM 1918Opalina and the origin of the CiliataAnat Rec148889Google Scholar
  27. Metcalf, MM 1923The Opalinid ciliate infusoriansBull US Nat Mus1201484Google Scholar
  28. Moreira, D, Guyader, HL, Philippe, H 2002Unusually high evolutionary rate of the elongation factor 1α genes from the Ciliophora and its impact on the phylogeny of eukaryotesMol Biol Evol16234245Google Scholar
  29. Moriya, M, Nakayama, T, Inouye, I 2000Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (stramenopiles, Incerate sedis)Protist1514155PubMedGoogle Scholar
  30. Moriya, M, Nakayama, T, Inouye, I 2002A new class of the stramenopiles, Placididea Classis nova: description of Placidia cafeteriopsis gen. et sp. novProtist153143156PubMedGoogle Scholar
  31. Patterson, DJ 1985The fine structure of Opalina ranarum (family Opalinidae): Opalinid phylogeny and classificationProtistologica21413428Google Scholar
  32. Patterson, DJ 1988Fine structure of the cortex of the protist Zelleriella antilliensis (Slopalinida, Opalinidae) from Bufo marinus in FijiMicrobios547180Google Scholar
  33. Patterson, DJ 1989Stramenopiles, chromophytes from a protistan perspectiveGreen, JCLeadbeater, BSCDiver, WL eds. The chromophyte algae, problems and perspectivesClarendon PressOxford357379Google Scholar
  34. Patterson, DJ 1990The fine structure of the cortex of the protist Protoopalina australis (Slopalinida, Opalinidae) from Litoria nasuta and Litoria inermis (Amphibia; Anura: Hylidae) in Queensland, AustraliaJ Protozool37449455Google Scholar
  35. Patterson, DJ 2002Changing views of protistan systematics: the taxonomy of protozoa—An overviewLee, JJLeedale, GFBradbury, P eds. An illustrated guide to the Protozoa2Society of ProtozoologistsLawrence, KS29Google Scholar
  36. Phillippe, H, Adoutte, A 1996The molecular phylogeny of Eukaryota: solid facts and uncertaintiesCoombs, GH eds. Evolutionary relationships among ProtozoaKluwer AcademicLondon2556Google Scholar
  37. Prescot, DM 1994The DNA of ciliated protozoaMicrobiol Rev58233267Google Scholar
  38. Roger, AJ, Sandblom, O, Doolittle, WF, Philippe, H 2002An evaluation of elongation factor 1α as a phylogenetic marker for eukaryotesMol Biol Evol16218233Google Scholar
  39. Sandon, H 1976The species problem in the opalinids (Protozoa, Opalinata), with special reference to ProtoopalinaTrans Am Microsc Soc95357366Google Scholar
  40. Schmidt, HA, Strimmer, K, Vingron, M, Haeseler, A 2002TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computingBioinformatics18502504PubMedGoogle Scholar
  41. Shimodaira, H 2002An approximately unbiased test of phylogenetic tree selectionSyst Biol51492508CrossRefPubMedGoogle Scholar
  42. Shimodaira, H, Hasegawa, M 2001CONSEL: for assessing the confidence of phylogenetic tree selectionBioinformatics1712461247PubMedGoogle Scholar
  43. Steel, MA 1994Recovering a tree from the leaf colourations it generates under a Markov modelAppl Math Lett71923CrossRefMathSciNetGoogle Scholar
  44. Thompson, JD, Plewniak, F, Poch, O 1999A comprehensive comparison of multiple sequence alignment programsNucleic Acids Res2726822690CrossRefPubMedGoogle Scholar
  45. Wessenberg, HS 1961Studies on the life cycle and morphogenesis of OpalinaUniv Press Calif61315370Google Scholar
  46. Wessenberg, HS 1978OpalinataParasitic Protozoa2551581Google Scholar
  47. Yang, Z 1997PAML: a program for package for phylogenetic analysis by maximum likelihoodCABIOS15555556Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Division of Life Science, Graduate School of Natural Science and TechnologyKanazawa UniversityJapan

Personalised recommendations