Journal of Molecular Evolution

, Volume 60, Issue 1, pp 81–89

Eggs-Only Diet: Its Implications for the Toxin Profile Changes and Ecology of the Marbled Sea Snake (Aipysurus eydouxii)

Articles

Abstract

Studies so far have correlated the variation in the composition of snake venoms with the target prey population and snake’s diet. Here we present the first example of an alternative evolutionary link between venom composition and dietary adaptation of snakes. We describe a dinucleotide deletion in the only three finger toxin gene expressed in the sea snake Aipysurus eydouxii (Marbled Sea Snake) venom and how it may have been the result of a significant change in dietary habits. The deletion leads to a frame shift and truncation with an accompanying loss of neurotoxicity. Due to the remarkable streamlining of sea snake venoms, a mutation of a single toxin can have dramatic effects on the whole venom, in this case likely explaining the 50- to 100-fold decrease in venom toxicity in comparison to that of other species in the same genus. This is a secondary result of the adaptation of A. eydouxii to a new dietary habit — feeding exclusively on fish eggs and, thus, the snake no longer using its venom for prey capture. This was parallel to greatly atrophied venom glands and loss of effective fangs. It is interesting to note that a potent venom was not maintained for use in defense, thus reinforcing that the primary use of snake venom is for prey capture.

Keywords

Sea snake Venom gland Pseudogene Three-finger toxin Neurotoxin Aipysurus eydouxii 

References

  1. Antil, S, Servent, D, Ménez, A 1999Variability among the sites by which curaremimetic toxins bind to torpedo acetylcholine receptor, as revealed by identification of the functional residues of α-cobratoxinJ Biol Chem2743485134855Google Scholar
  2. Chang, CC 1979

    The action of snakes venoms on nerve and muscle

    Lee, CY eds. Snake venoms, handbook of experimental pharmacologySpringer-VerlagBerlin309376
    Google Scholar
  3. Chang, CC 1999Looking back on the discovery of alpha-bungarotoxinJ Biomed Sci6368375Google Scholar
  4. Chetty, N, Du, A, Hodgson, WC, Winkel, K, Fry, BG 2004A pharmacological examination of Indo-Pacific sea-snake venoms: Efficacy of antivenomToxicon44193200Google Scholar
  5. Chippaux, JP, Williams, V, White, J 1991Snake venom variability: Methods of study, results and interpretationToxicon2912791303CrossRefGoogle Scholar
  6. Daltry, JC, Wüster, W, Thorpe, RS 1996Diet and snake venom evolutionNature379537540Google Scholar
  7. Fry, BG, Wüster, W 2004Assembling an arsenal: Origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequencesMol Biol Evol21870883Google Scholar
  8. Fry, BG, Wickramaratna, JC, Hodgson, WC, Alewood, PF, Kini, RM, Ho, H, Wüster, W 2002Electrospray liquid chromatography/mass spectrometry fingerprinting of Acanthophis (death adder) venoms: Taxonomic and toxinological implicationsRapid Commun Mass Spectrom16600608Google Scholar
  9. Fry, BG, Wüster, W, Kini, RM, Brusic, V, Khan, A, Venkataraman, D, Rooney, AP 2003aMolecular evolution and phylogeny of elapid snake venom three-finger toxinsJ Mol Evol57110129Google Scholar
  10. Fry, BG, Lumsden, NG, Wüster, W, Wickramaratna, JC, Hodgson, WC, Kini, RM 2003bIsolation of a neurotoxin (alpha-colubritoxin) from a nonvenomous colubrid: Evidence for early origin of venom in snakesJ Mol Evol57446452Google Scholar
  11. Fry, BG, Wüster, W, Ramjan, SFR, Jackson, T, Martelli, P, Kini, RM 2003cAnalysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: Evolutionary and toxinological implicationsRapid Commun Mass Spectrom1720472062Google Scholar
  12. Fryklund, L, Eaker, D, Karlsson, E 1972Amino acid sequences of the two principal neurotoxins of Enhydrina schistose venomBiochemistry1146334640Google Scholar
  13. Gopalakrishnakone, P, Kochva, E 1990Venom glands and some associated muscles in sea snakesJ Morphol2058596Google Scholar
  14. Guinea, ML, Tamiya, N, Cogger, HG 1983The neurotoxin of the sea snake Laticauda schistorhynchusBiochem J2133941Google Scholar
  15. Heatwole, H 1999Sea snakes2nd edKriegerMiami, FLGoogle Scholar
  16. Huelsenbeck, JP, Ronquist, F 2001MrBayes: Bayesian inference of phylogenetic treesBioinformatics17754755CrossRefPubMedGoogle Scholar
  17. Jayanthi, GP, Veerabasappa, GT 1988Geographical variation in India in the composition and lethal potency of Russel’s viper (Vipera russelli) venomToxicon26257264Google Scholar
  18. Kini, RM 2002Molecular moulds with multiple missions: Functional sites in three-finger toxinsClin Exp Pharmacol Physiol29815822Google Scholar
  19. Liu, CS, Blackwell, RQ 1974Hydrophitoxin b from Hydrophis cyanocinctus venomToxicon12543546Google Scholar
  20. Maeda, N, Tamiya, N 1976Isolation, properties and amino acid sequences of three neurotoxins from the venom of a sea snake, Aipysurus laevisBiochem J1537987Google Scholar
  21. McCarthy, CJ 1986Relationships of the laticaudine sea snakes (Serpentes: Elapidae: Laticaudinae)Bull Br Mus Nat Hist (Zool)50127161Google Scholar
  22. McCarthy, CJ 1987Adaptations of sea snakes that eat fish eggs; With a note on the throat musculature of Aipysurus eydouxi (Gray, 1894)J Nat Hist111191128Google Scholar
  23. Minton, SA 1983Lethal toxicity of venoms of snakes from Coral SeaToxicon21580581Google Scholar
  24. Minton, SA, da Costa, MS 1975

    Serological relationships of sea snakes and their evolutionary implications

    Dunson, W eds. The biology of sea snakesUniversity Park PressBaltimore, MD3355
    Google Scholar
  25. Nei, M, Gu, X, Sitnikova, T 1997Evolution by the birth-and-death process in multigene families of the vertebrate immune systemProc Natl Acad Sci USA9477997806CrossRefPubMedGoogle Scholar
  26. Pillet, L, Tremeau, O, Ducancel, F, Drevet, P, Zinn-Justin, S, Pinkasfeld, S, Boulain, JC, Ménez, A 1993Genetic engineering of snake toxins. Role of invariant residues in the structural and functional properties of a cuaremimetic toxin, as probed by site-directed mutagenesisJ Biol Chem268909916Google Scholar
  27. Ronquist, F, Huelsenbeck, JP 2003MrBayes 3: Bayesian phylogenetic inference under mixed modelsBioinformatics1915721574CrossRefPubMedGoogle Scholar
  28. Rooney, AP, Piontkivska, H, Nei, M 2002Molecular evolution of the nontandemly repeated genes of the histone 3 multigene familyMol Biol Evol196875Google Scholar
  29. Scanlon, JD, Lee, MSY 2004Phylogeny of Australasian venomous snakes (Colubroidea, Elapidae, Hydrophiinae) based on phenotypic and molecular evidenceZoologica Scripta33335361Google Scholar
  30. Scanlon, JD, Shine, R 1988Dentition and diet in snakes: Adaptations to oophagy in the Australian elapid genus SimoselapsJ Zool Lond216519528Google Scholar
  31. Schwaner, TD, Baverstock, PR, Dessauer, HC, Mengden, GA 1985

    Immunological evidence for the phylogenetic relationships of Australian elapid snakes

    Grigg, GShine, REhmann, H eds. Biology of Australasian frogs and reptiles Surrey Beatty and SonsSydney177184
    Google Scholar
  32. Slowinski, JB, Lawson, R 2002Snake phylogeny: Evidence from nuclear and mitochondrial genesMol Phylogenet Evol24194202Google Scholar
  33. Tamiya, N 1975

    Sea snake venoms and toxins

    Dunson, WA eds. The biology of sea snakesUniversity Park PressBaltimore, MD385415
    Google Scholar
  34. Tamiya, N, Maeda, N, Cogger, HG 1983Neurotoxins from the venoms of the sea snakes Hydrophis omatus and Hydrophis lapemoidesBiochem J2133138Google Scholar
  35. Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis toolsNucleic Acids Res2548764882CrossRefPubMedGoogle Scholar
  36. Trémeau, O, Lemaire, O, Drevet, P, Dinkasfeld, S, Ducancel, F, Boulain, JC, Ménez, A 1995Genetic engineering of snake toxins. The functional site of Erabutoxin a, as delineated by site-directed mutagenesis, includes variant residuesJ Biol Chem27093629369Google Scholar
  37. Tu, AT 1974Sea snake investigation in the Gulf of ThailandJ Herpetol8201210Google Scholar
  38. Vidal, N, Hedges, SB 2002Higher-level relationships of caenophidian snakes inferred from four nuclear and mitochondrial genesCR Biol325987995Google Scholar
  39. Voris, HK 1977A phylogeny of the sea snakes (Hydrophiidae)Fieldiana. Zool7079166Google Scholar
  40. Voris, HK, Voris, HH 1983Feeding strategies in marine snakes: An analysis of evolutionary, morphological, behavioral and ecological relationshipsAm Zool23411425Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Biological Science, Faculty of ScienceNational University of SingaporeSingapore
  2. 2.Australian Venom Research Unit, Department of Pharmacology, School of MedicineUniversity of MelbourneParkvilleAustralia
  3. 3.Population and Evolutionary Genetics UnitMuseum VictoriaMelbourneAustralia
  4. 4.Department of Biochemistry and Molecular BiophysicsVirginia Commonwealth University, Medical College of VirginiaRichmondUSA

Personalised recommendations