Advertisement

Journal of Molecular Evolution

, Volume 61, Issue 4, pp 417–424 | Cite as

Type I Antifreeze Proteins: Possible Origins from Chorion and Keratin Genes in Atlantic Snailfish

  • Robert P. EvansEmail author
  • Garth L. Fletcher
Article

Abstract

Type I antifreeze proteins (AFPs) are alanine-rich α-helical polypeptides found in some species of right-eye flounders, sculpin, and snailfish. In this study, a shorthorn sculpin skin type I cDNA clone was used to probe an Atlantic snailfish liver cDNA library in order to locate expressed genes corresponding to snailfish plasma AFPs. Clones isolated from the cDNA library had sections with substantial amino acid and nucleotide sequence similarity to snailfish type I AFPs. However, further analysis revealed that the positives were actually three different liver-expressed proteins—two were eggshell proteins, while the third was a type II keratin. We propose that a shift in reading frame could produce alanine-rich candidate AFPs with possible antifreeze activity or ice crystal modification properties. Furthermore, it is plausible that one or more of the liver-expressed proteins represent the progenitors of snailfish type I AFPs.

Keywords

Snailfish Type I Antifreeze Protein Liver Keratin Chorion 

Notes

Acknowledgments

We thank M. King and Dr. M. Shears at the OSC for technical assistance and the OSC divers for sample collection. We also thank Dr. Ming Kao for help with antifreeze activity measurements and Dr. Z. Gong for snailfish cDNA library construction. This work was supported by a grant from NSERC.

References

  1. Aarset, AV, Jorgensen, L 1988Cold hardiness of the eggs of the plaise, Pleuronectes platessaPolar Biol99599CrossRefGoogle Scholar
  2. Chen, L, DeVries, AL, Cheng, CH 1997aConvergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic codProc Natl Acad Sci USA9438173822CrossRefGoogle Scholar
  3. Chen, L, DeVries, AL, Cheng, CH 1997bEvolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fishProc Natl Acad Sci USA9438113816CrossRefGoogle Scholar
  4. Cheng, CH, Chen, L 1999Evolution of an antifreeze glycoproteinNature401443444CrossRefPubMedGoogle Scholar
  5. Chomczynski, P, Sacchi, N 1987Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extractionAnal Biochem162156159CrossRefPubMedGoogle Scholar
  6. Davenport, J, Stene, J 1986Freezing resistance, temperature and salinity tolerance in eggs, larvae and adults of capelin, Mallotus villosus, from BalsfjordJ Mar Biol Assoc UK66145157Google Scholar
  7. Deng, G, Andrews, DW, Laursen, RA 1997Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosisFEBS Lett4021720CrossRefPubMedGoogle Scholar
  8. Evans, RP (2003) Characterization or skin and plasma type I antifreeze proteins from Atlantic (Liparis atlanticus) and dusky (Liparis gibbus) snailfish. PhD thesis. Memorial University of Newfoundland, St. John’s, NewfoundlandGoogle Scholar
  9. Evans, RP, Fletcher, GL 2004Isolation and purification of antifreeze proteins from skin tissues of snailfish, cunner and sea ravenBiochim Biophys Acta1700209217PubMedGoogle Scholar
  10. Evans, RP, Fletcher, GL 2001Isolation and characterization of type I antifreeze proteins from Atlantic snailfish (Liparis atlanticus) and dusky snailfish (Liparis gibbus)Biochim Biophys Acta1547235244PubMedGoogle Scholar
  11. Ewart, KV, Fletcher, GL 1993Herring antifreeze protein; primary structure and evidence for a C-type lectin evolutionary originMol Mar Biol Biotechnol22027PubMedGoogle Scholar
  12. Ewart, KV, Li, Z, Yang, DS, Fletcher, GL, Hew, CL 1998The ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectinsBiochemistry3740804085CrossRefPubMedGoogle Scholar
  13. Ewart, KV, Lin, Q, Hew, CL 1999Structure, function and evolution of antifreeze proteinsCell Mol Life Sci55271283CrossRefPubMedGoogle Scholar
  14. Fletcher, GL, Goddard, SV, Davies, PL, Gong, Z, Ewart, KV, Hew, CL 1998New insights into fish antifreeze proteins: Physiological significance and molecular regulationPörtner, HOPlayle, RC eds. Cold ocean physiologyCambridge University PressNew York240265Google Scholar
  15. Fletcher, GL, Hew, CL, Davies, PL 2001Antifreeze proteins of teleost fishesAnnu Rev Physiol63359390CrossRefPubMedGoogle Scholar
  16. Gong, Z, Ewart, KV, Hu, Z, Fletcher, GL, Hew, CL 1996Skin antifreeze protein genes of the winter flounder, Pleuronectes americanus, encode distinct and active polypeptides without the secretory signal and prosequencesJ Biol Chem27141064112CrossRefPubMedGoogle Scholar
  17. Graber, JH, Cantor, CR, Mohr, SC, Smith, TF 1999In silico detection of control signals: mRNA 3′-end-processing sequences in diverse speciesProc Natl Acad Sci USA961405514060CrossRefPubMedGoogle Scholar
  18. Gronwald, W, Loewen, MC, Lix, B, Daugulis, AJ, Sonnichsen, FD, Davies, PL, Sykes, BD 1998The solution structure of type II antifreeze protein reveals a new member of the lectin familyBiochemistry3747124721CrossRefPubMedGoogle Scholar
  19. Harding, MM, Ward, LG, Haymet, AD 1999Type I “antifreeze” proteins. Structure-activity studies and mechanisms of ice growth inhibitionEur J Biochem264653665CrossRefPubMedGoogle Scholar
  20. Hew, CL, Yang, DS 1992Protein interaction with iceEur J Biochem2033342CrossRefPubMedGoogle Scholar
  21. Low, WK, Miao, M, Ewart, KV, Yang, DS, Fletcher, GL, Hew, CL 1998Skin-type antifreeze protein from the shorthorn sculpin, Myoxocephalus scorpius. Expression and characterization of a Mr 9,700 recombinant proteinJ Biol Chem2732309823103CrossRefPubMedGoogle Scholar
  22. Low, WK, Lin, Q, Stathakis, C, Miao, M, Fletcher, GL, Hew, CL 2001Isolation and characterization of skin-type, type I antifreeze polypeptides from the longhorn sculpin, Myoxocephalus octodecemspinosusJ Biol Chem2761158211589CrossRefPubMedGoogle Scholar
  23. Low, WK, Lin, Q, Ewart, KV, Fletcher, GL, Hew, CL 2002The skin-type antifreeze polypeptides: A new class of type I AFPsEwart, KVHew, CL eds. Fish antifreeze proteinsWorld ScientificSingapore161186Google Scholar
  24. Marshall, CB, Fletcher, GL, Davies, PL 2004Hyperactive antifreeze protein in a fishNature429153CrossRefPubMedGoogle Scholar
  25. Scott, WB, Scott, MG 1988Atlantic fishes of CanadaUniversity of Toronto PressTorontoGoogle Scholar
  26. Tomczak, MM, Hincha, PK, Estrada, SD, Wolkers, WF, Crowe, LM, Feeney, RE, Tablin, F, Crowe, JH 2002A mechanism for stabilization of membranes at low temperatures by an antifreeze proteinBiophys J82874881PubMedGoogle Scholar
  27. True, JR, Carroll, SB 2002Gene co-option in physiological and morphological evolutionAnnu Rev Cell Dev Biol185380CrossRefPubMedGoogle Scholar
  28. Valerio, PF, Goddard, SV, Kao, MH, Fletcher, GL 1992Survival of northern Atlantic cod (Gadus morhua) eggs and larvae when exposed to ice and low temperatureCan J Fish Aquat Sci4925882595Google Scholar
  29. Wu, Y, Fletcher, GL 2001Efficacy of antifreeze protein types in protecting liposome membrane integrity depends on phospholipid classBiochim Biophys Acta15241116PubMedGoogle Scholar
  30. Zhao, Z, Deng, G, Lui, Q, Laursen, RA 1998Cloning and sequencing of cDNA encoding the LS-12 antifreeze protein in the longhorn sculpin, Myoxocephalus octodecimspinosisBiochim Biophys Acta1382177180PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Ocean Sciences CentreMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations