Journal of Molecular Evolution

, Volume 59, Issue 6, pp 792–805 | Cite as

Evolutionary Diversity of Vertebrate Small Heat Shock Proteins

  • Erik Franck
  • Ole Madsen
  • Teun van Rheede
  • Guénola Ricard
  • Martijn A. Huynen
  • Wilfried W. de JongEmail author


All vertebrates express multiple small heat shock proteins (sHsps), which are important components of the cellular chaperoning machinery and display a spectacular diversity of functions. This ranges from remodeling the cytoskeleton and inhibiting apoptosis to serving as structural proteins in eye lens and sperm tail. Most information is available for the 10 known mammalian sHsps, formally named HspB1–B10. Only three of them (Hsp27/B1, αA-crystallin/B4, αB-crystallin/B5) have been reported from nonmammalian vertebrates, while an apparent paralog, Hsp30/B11, is found in frogs and teleost fish. To reconstruct the evolutionary diversification of the sHsps in vertebrates, we searched for additional sHsps in genome, protein, and EST databases and sequenced some avian and amphibian sHsps (HspB2, Hsp30/B11). The urochordate Ciona intestinalis was included in the search, as the outgroup of vertebrates. Orthologs of seven mammalian sHsps were now found in other vertebrate classes. Two novel sHsps, named HspB11 and HspB12, were recognized in birds, and four novel sHsps, named HspB12–B15, in teleost fish. Secondary structure predictions of orthologous sHsps from different vertebrate classes indicate conservation of the β-sandwich structure of the functionally important C-terminal “α-crystallin domain,” while the N-terminal domains generally have α-helical structures, despite their pronounced sequence variation. The constructed chordate sHsp tree is supported by shared introns, indels, and diagnostic sequences. The tree distinguishes putative orthologous and paralogous relationships, which will facilitate the functional and structural comparison of the various vertebrate sHsps. The 15 recognized paralogous vertebrate sHsps reflect the period of extensive gene duplications early in vertebrate evolution. Eleven of these sHsps are grouped in a clade that might be specific for chordates. It is inferred that at least 13 intron insertions have occurred during the evolution of chordate sHsp genes, while a single ancient intron is maintained in some lineages, in line with the general trend of massive intron gain before or during early vertebrate radiation. Interesting is the occurrence of several head-to-head located pairs of chordate sHsp genes.


α-Crystallin Phylogeny Genome duplication Intron evolution Head-to-head genes Small heat shock proteins Moonlighting 



We thank Akie Sato and Jan Klein (Tubingen) for providing the EST of B. lanceolatum BlHsp24.1, Remco Rexwinkel for sequencing this sHsp, Guido Kappé for useful discussions, and the Netherlands Organization for Scientific Research (NWO-ALW) for financial support.


  1. Adachi, N, Lieber, MR 2002Bidirectional gene organization: A common architectural feature of the human genomeCell109807809Google Scholar
  2. Arrigo, APMüller, WEG eds. 2002Small stress proteinsSpringer VerlagBerlinGoogle Scholar
  3. Arrigo, AP, Paul, C, Ducasse, C, Manero, F, Kretz-Remy, C, Virot, S, Javouhey, E, Mounier, N, Diaz-Latoud, C 2002Small stress proteins: Novel negative modulators of apoptosis induced independently of reactive oxygen speciesProg Mol Subcell Biol28185204Google Scholar
  4. Behrens, M, Wilkens, H, Schmale, H 1998Cloning of the αA-crystallin genes of a blind cave form and the epigean form of Astyanax fasciatus: A comparative analysis of structure, expression and evolutionary conservationGene216319326Google Scholar
  5. Benson, DA, Karsch-Mizrachi, I, Lipman, DJ, Ostell, J, Wheeler, DL 2003GenBankNucleic Acids Res312327CrossRefPubMedGoogle Scholar
  6. Bukach, OV, Seit-Nebi, AS, Marston, SB, Gusev, NB 2004Some properties of human small heat shock protein Hsp20 (HspB6)Eur J Biochem271291302Google Scholar
  7. Candido, EP, Jones, D, Dixon, DK, Graham, RW, Russnak, RH, Kay, RJ 1989Structure, organization, and expression of the 16-kDa heat shock gene family of Caenorhabditis elegansGenome31690697Google Scholar
  8. Combet, C, Blanchet, C, Geourjon, C, Detéage, G 2000NPS@: Network protein sequence analysisTrends Biochem Sci291147150Google Scholar
  9. Copley, RR, Letunic, I, Bork, P 2002Genome and protein evolution in eukaryotesCurr Opin Chem Biol63945Google Scholar
  10. Dehal, P, Satou, Y, Campbell, RK, Chapman, J, Degnan, B, Tomaso, A, Davidson, B 2002The draft genome of Ciona intestinalis: Insights into chordate and vertebrate originsScience29821572167CrossRefPubMedGoogle Scholar
  11. Jong, WW, Caspers, GJ, Leunissen, JA 1998Genealogy of the α-crystallin–small heat-shock protein superfamilyInt J Biol Macromol22151162Google Scholar
  12. Wit, NJW, Verschuure, P, Kappé, G, King, SM, Jong, WW, Boelens, WC, Muijen, GNP 2004Testis-specific human small heat shock protein HspB9 is a novel cancer/testis antigen, and interacts with the dynein subunit TCTEL1Eur J Cell Biol83337345Google Scholar
  13. Doerwald, L, Rheede, T, Dirks, RP, Madsen, O, Rexwinkel, R, Genesen, ST, Martens, GJ, Jong, WW, Lubsen, NH 2004Sequence and functional conservation of the intergenic region between the head-to-head genes encoding the small heat shock proteins αB-crystallin and HspB2 in the mammalian lineageJ Mol Evol59674686Google Scholar
  14. Escriva, H, Manzon, L, Youson, J, Laudet, V 2002Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolutionMol Biol Evol1914401450PubMedGoogle Scholar
  15. Evgrafov, OV, Mersiyanova, I, Irobi, J, Bosch, L, Dierick, I, Leung, CL, Schagina, O, Verpoorten, N, Impe, K, Fedotov, V, Dadali, E, Auer-Grumbach, M, Windpassinger, C, Wagner, K, Mitrovic, Z, Hilton-Jones, D, Talbot, K, Martin, JJ, Vasserman, N, Tverskaya, S, Polyakov, A, Liem, RK, Gettemans, J, Robberecht, W, Jonghe, P, Timmerman, V 2004Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathyNat Genet36602606CrossRefPubMedGoogle Scholar
  16. Fedorov, A, Roy, S, Fedorova, L, Gilbert, W 2003Mystery of intron gainGenome Res1322362241Google Scholar
  17. Felsenstein, J 2002PHYLIP (phylogeny inference package), version 3.6a3Department of Genetics, University of WashingtonSeattleGoogle Scholar
  18. Fernando, P, Megeney, LA, Heikkila, JJ 2003Phosphorylation-dependent structural alterations in the small hsp30 chaperone are associated with cellular recoveryExp Cell Res286175185Google Scholar
  19. Flynn, CR, Komalavilas, P, Tessier, D, Thresher, J, Niederkofler, EE, Dreiza, CM, Nelson, RW, Panitch, A, Joshi, L, Brophy, CM 2003Transduction of biologically active motifs of the small heat shock-related protein HSP20 leads to relaxation of vascular smooth muscleFASEB J1713581360Google Scholar
  20. Fontaine, JM, Rest, JS, Welsh, MJ, Benndorf, R 2003The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteinsCell Stress Chaperones86269Google Scholar
  21. Friedman, R, Hughes, AL 2003The temporal distribution of gene duplication events in a set of highly conserved human gene familiesMol Biol Evol20154161CrossRefPubMedGoogle Scholar
  22. Guindon, S, Gascuel, O 2003A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihoodSyst Biol52696704CrossRefPubMedGoogle Scholar
  23. Haslbeck, M, Buchner, J 2002Chaperone function of sHspsProg Mol Subcell Biol283759PubMedGoogle Scholar
  24. Horwitz, J 1992α-Crystallin can function as a molecular chaperoneProc Natl Acad Sci USA891044910453Google Scholar
  25. Huelsenbeck, JP, Ronquist, F 2001MRBAYES: Bayesian inference of phylogenetic treesBioinformatics17754755CrossRefPubMedGoogle Scholar
  26. Irobi, J, Impe, KV, Seeman, P, Jordanova, A, Dierick, I, Verpoorten, N, Michalik, A, Vriendt, ED, Jacobs, A, Gerwen, VV, Vennekens, K, Mazanec, R, Tournev, I, Hilton-Jones, D, Talbot, K, Kremensky, I, Bosch, LV, Robberecht, W, Vandekerckhove, J, Broeckhoven, CV, Gettemans, J, Jonghe, PD, Timmerman, V 2004Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathyNat Genet36597601CrossRefPubMedGoogle Scholar
  27. Iwaki, A, Nagano, T, Nakagawa, M, Iwaki, T, Fukumaki, Y 1997Identification and characterization of the gene encoding a new member of the α-crystallin/small hsp family, closely linked to the αB-crystallin gene in a head-to-head mannerGenomics45386394Google Scholar
  28. Jeffery, JC 2003Moonlighting proteins: Old proteins learning new tricksTrends Genet19415417Google Scholar
  29. Kaessmann, H, Zollner, S, Nekrutenko, A, Li, WH 2002Signatures of domain shuffling in the human genomeGenome Res1216421650Google Scholar
  30. Kappé, G, Verschuure, P, Philipsen, RL, Staalduinen, AA, Boogaart, P, Boelens, WC, Jong, WW 2001Characterization of two novel human small heat shock proteins: Protein kinase-related HspB8 and testis-specific HspB9Biochim Biophys Acta152016Google Scholar
  31. Kappé, G, Leunissen, JAM, Jong, WW 2002Evolution and diversity of prokaryotic small heat shock proteinsProg Mol Subcell Biol28117Google Scholar
  32. Kappé, G, Franck, E, Verschuure, P, Boelens, WC, Leunissen, JA, Jong, WW 2003The human genome encodes 10 α-crystallin-related small heat shock proteins: HspB1–10Cell Stress Chaperones85361CrossRefPubMedGoogle Scholar
  33. Kawazoe, Y, Tanabe, M, Nakai, A 1999Ubiquitous and cell-specific members of the avian small heat shock protein familyFEBS Lett455271275Google Scholar
  34. Kim, KK, Kim, R, Kim, SH 1998Crystal structure of a small heat-shock proteinNature394595599Google Scholar
  35. Krone, PH, Snow, A, Ali, A, Pasternak, JJ, Heikkila, JJ 1992Comparison of regulatory and structural regions of the Xenopus laevis small heat-shock protein-encoding gene familyGene110159166Google Scholar
  36. Landry, J, Chretien, P, Lambert, H, Hickey, E, Weber, LA 1989Heat shock resistance conferred by expression of the human HSP27 gene in rodent cellsCell Biol109715Google Scholar
  37. Liang, P, Amons, R, MacRae, TH, Clegg, JS 1997Purification, structure and in vitro molecular-chaperone activity of Artemia p26, a small heat-shock/alpha-crystallin proteinEur J Biochem243225232Google Scholar
  38. Lu, SF, Pan, FM, Chiou, SH 1995Sequence analysis of frog αB-crystallin cDNA: sequence homology and evolutionary comparison of αA, αB and heat shock proteinsBiochem Biophys Res Commun216881891Google Scholar
  39. Mackay, DS, Andley, UP, Shiels, A 2003Cell death triggered by a novel mutation in the αA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21qEur J Hum Genet11784793Google Scholar
  40. Madera, M, Gough, J 2002A comparison of profile hidden Markov model procedures for remote homology detectionNucleic Acids Res3043214328Google Scholar
  41. McLysaght, A, Hokamp, K, Wolfe, KH 2002Extensive genomic duplication during early chordate evolutionNat Genet31200204Google Scholar
  42. Miron, T, Vancompernolle, K, Vandekerckhove, J, Wilchek, M, Geiger, B 1991A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock proteinJ Cell Biol114255261CrossRefPubMedGoogle Scholar
  43. Narberhaus, F 2002α-Crystallin-type heat shock proteins: Socializing minichaperones in the context of a multichaperone networkMicrobiol Mol Biol Rev666493Google Scholar
  44. Norris, CE, Hightower, LE 2002Discovery of two distinct small heat shock protein (HSP) families in the desert fish PoeciliopsisProg Mol Subcell Biol281935Google Scholar
  45. Panasenko, OO, Seit Nebi, A, Bukach, OV, Marston, SB, Gusev, NB 2002Structure and properties of avian small heat shock protein with molecular weight 25 kDaBiochim Biophys Acta16016474Google Scholar
  46. Pasta, SY, Bakthisaran, R, Tangirala, R, Rao, CM 2003Role of the conserved SRLFDQFFG region of α-crystallin, a small heat shock protein: Effect on oligomeric size, subunit ex change and chaperone-like activityJ Biol Chem27851159 51166Google Scholar
  47. Piatigorsky, J 1998Gene sharing in lens and cornea: Facts and implicationsProg Retin Eye Res17145174Google Scholar
  48. Piatigorsky, J 2003Crystallin genes: Specialization by changes in gene regulation may precede gene duplicationJ Struct Funct Genomics3131137Google Scholar
  49. Posner, M, Kantorow, M, Horwitz, J 1999Cloning, sequencing and differential expression of αB-crystallin in the zebrafish, Danio rerioBiochim Biophys Acta1447271277Google Scholar
  50. Pras, E, Frydman, M, Levy-Nissenbaum, E, Bakhan, T, Raz, J, Assia, EI, Goldman, B, Pras, E 2000A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian familyInvest Ophthalmol Vis Sci4135113515Google Scholar
  51. Quinlan, R 2002Cytoskeletal competence requires protein chaperonesProg Mol Subcell Biol28219234Google Scholar
  52. Rogozin, IB, Wolf, YI, Sorokin, AV, Mirkin, BG, Koonin, EV 2003Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolutionCurr Biol1315121517Google Scholar
  53. Rokas, A, Holland, PW 2000Rare genomic changes as a tool for phylogeneticsTrends Ecol Evol15454459Google Scholar
  54. Rost, B, Sander, C 1993Prediction of protein secondary structure at better than 70% accuracyJ Mol Biol232584599CrossRefPubMedGoogle Scholar
  55. Salaneck, E, Ardell, DH, Larson, ET, Larhammar, D 2003Three neuropeptide Y receptor genes in the spiny dogfish, Squalus acanthias, support en bloc duplications in early vertebrate evolutionMol Biol Evol2012711280Google Scholar
  56. Sato, A, Mayer, WE, Klein, J 2003A molecule bearing an immunoglobulin-like V region of the CTX subfamily in amphioxusImmunogenetics55423427Google Scholar
  57. Sawada, K, Agata, K, Eguchi, G 1992Crystallin gene expression in the process of lentoidogenesis in cultures of chicken lens epithelial cellsExp Eye Res55879887Google Scholar
  58. Scharf, K-D, Siddique, M, Vierling, E 2001The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins)Cell Stress Chaperones6225237Google Scholar
  59. Selcen, D, Engel, AG 2003Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutationsAnn Neurol54804810CrossRefPubMedGoogle Scholar
  60. Shao, X, Hoorn, FA 1996Self-interaction of the major 27-kilodalton outer dense fiber protein is in part mediated by a leucine zipper domain in the ratBiol Reprod5513431350Google Scholar
  61. Sugiyama, Y, Suzuki, A, Kishikawa, M, Akutsu, R, Hirose, T, Waye, MM, Tsui, SK, Yoshida, S, Ohno, S 2000Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiationJ Biol Chem27510951104CrossRefPubMedGoogle Scholar
  62. Takai, D, Jones, PA 2004The origins of bi-directional promoters: Computational analyses of intergenic distance in the human genomeMol Biol Evol21463467Google Scholar
  63. Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis toolsNucleic Acids Res2548764882CrossRefPubMedGoogle Scholar
  64. Trinklein, ND, Aldred, SF, Hartman, SJ, Schroeder, DI, Otillar, RP, Myers, RM 2004An abundance of bidirectional promoters in the human genomeGenome Res146266Google Scholar
  65. Tsvetkova, NM, Horvath, I, Torok, Z, Wolkers, WF, Balogi, Z, Shigapova, N, Crowe, LM, Tablin, F, Vierling, E, Crowe, JH, Vigh, L 2002Small heat-shock proteins regulate membrane lipid polymorphismProc Natl Acad Sci USA991350413509Google Scholar
  66. Van de Peer, Y, Taylor, JS, Meyer, A 2003Are all fishes ancient polyploids? J Struct Funct Genomics36573Google Scholar
  67. van Montfort, RL, Basha, E, Friedrich, KL, Slingsby, C, Vierling, E 2001aCrystal structure and assembly of a eukaryotic small heat shock proteinNat Struct Biol810251030Google Scholar
  68. van Montfort, R, Slingsby, C, Vierling, E 2001bStructure and function of the small heat shock protein/α-crystallin family of molecular chaperonesAdv Protein Chem59105156Google Scholar
  69. Vicart, P, Caron, A, Guicheney, P, Li, Z, Prevost, MC, Faure, A, Chateau, D, Chapon, F, Tome, F, Dupret, JM, Paulin, D, Fardeau, M 1998A missense mutation in the alpha B-crystallin chaperone gene causes a desmin-related myopathyNat Genet209295CrossRefPubMedGoogle Scholar
  70. Waters, ER, Vierling, E 1999Chloroplast small heat shock proteins: Evidence for atypical evolution of an organelle-localized proteinProc Natl Acad Sci USA961439414399Google Scholar
  71. Whelan, S, Goldman, N 2001A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approachMol Biol Evol18691 699PubMedGoogle Scholar
  72. Wieske, M, Benndorf, R, Behlke, J, Dolling, R, Grelle, G, Bielka, H, Lutsch, G 2001Defined sequence segments of the small heat shock proteins HSP25 and αB-crystallin inhibit actin polymerizationEur J Biochem26820832090Google Scholar

Copyright information

© Springer Science + Business Media Inc. 2004

Authors and Affiliations

  • Erik Franck
    • 1
  • Ole Madsen
    • 1
  • Teun van Rheede
    • 1
  • Guénola Ricard
    • 2
  • Martijn A. Huynen
    • 2
  • Wilfried W. de Jong
    • 1
    Email author
  1. 1.Department of BiochemistryUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Nijmegen Centre for Molecular Life Sciences, CMBlUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations