Advertisement

Journal of Molecular Evolution

, Volume 59, Issue 1, pp 103–113 | Cite as

Cyanobacterial Genes Transmitted to the Nucleus Before Divergence of Red Algae in the Chromista

  • Hisayoshi Nozaki
  • Motomichi Matsuzaki
  • Osami Misumi
  • Haruko Kuroiwa
  • Masami Hasegawa
  • Tetsuya Higashiyama
  • Tadasu Shin-i
  • Yuji Kohara
  • Naotake Ogasawara
  • Tsuneyoshi Kuroiwa
Article

Abstract

The plastids of red algae, green plants, and glaucophytes may have originated directly from a cyanobacterium-like prokaryote via primary endosymbiosis. In contrast, the plastids of other lineages of eukaryotic phototrophs appear to be the result of secondary or tertiary endosymbiotic events involving a phototrophic eukaryote and a eukaryotic host cell. Although phylogenetic analyses of multiple plastid genes from a wide range of eukaryotic lineages have been carried out, the phylogenetic positions of the secondary plastids of the Chromista (Heterokontophyta, Haptophyta and Cryptophyta) are ambiguous in a range of different analyses. This ambiguity may be the result of unusual substitutions or bias in the plastid genes established by the secondary endosymbiosis. In this study, we carried out phylogenetic analyses of five nuclear genes of cyanobacterial origin (6-phosphogluconate dehydrogenase [gnd], oxygen-evolving-enhancer [psbO], phosphoglycerate kinase [pgk], delta-aminolevulinic acid dehydratase [aladh], and ATP synthase gamma [atpC] genes), using the genome sequence data from the primitive red alga Cyanidioschyzon merolae 10D. The sequence data robustly resolved the origin of the cyanobacterial genes in the nuclei of the Chromista (Heterokontophyta and Haptophyta) and Dinophyta, before the divergence of the extant red algae (including Porphyra [Rhodophyceae] and Cyanidioschyzon [Cyadidiophyceae]). Although it is likely that gnd genes in the Chromista were transmitted from the cyanobacterium-like ancestor of plastids in the primary endosymbiosis, other genes might have been transferred from nuclei of a red algal ancestor in the secondary endosymbiosis. Therefore, the results indicate that the Chromista might have originated from the ancient secondary endosymbiosis before the divergence of extant red algae.

Keywords

Chromista Cyanobacterial nuclear genes Phylogeny Plastids Primary endosymbiosis Secondary endosymbiosis 

Notes

Acknowledgments

This study was supported by Grant-in-Aid for Scientific Research on Priority Areas (c) “Genome Biology” from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 1320611 to T.K.), and by the Program for the Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN; to T.K., T.H., and H.N.).

References

  1. Adachi, J, Hasegawa, M 1996Computer Science Monographs, No. 28, MOLPHY Version 2.3: Programs for Molecular Phylogenetics Based on Maximum LikelihoodInstitute of Statistical MathematicsTokyoGoogle Scholar
  2. Archibald, JM, Rogers, MB, Toop, M, Ishida, K, Keeling, PJ 2003Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans Proc Natl Acad Sci USA10076787683CrossRefPubMedGoogle Scholar
  3. Andersson, JO, Roger, AJ 2002A cyanobacterial gene in nonphotosynthetic protests—An early chloroplast acquisition in Eukaryotes?Curr Biol12115119CrossRefPubMedGoogle Scholar
  4. Baldauf, SL, Doolittle, WF 1997Origin and evolution of the slime molds (Mycetozoa)Proc Natl Acad Sci USA941200712012CrossRefPubMedGoogle Scholar
  5. Bapteste, E, Brinkmann, H, Lee, JA, Moore, DV, Sensen, CW, Gordon, P, Duruflé, L, Gaasterland, T, Lopez, P, Müller, M, Philippe, H 2002The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba Proc Natl Acad Sci USA9914141419CrossRefPubMedGoogle Scholar
  6. Bhattacharya, D, Medlin, L 1995The phylogeny of plastids: A review based on comparisons of small subunit ribosomal RNA coding regionsJ Phycol31489498Google Scholar
  7. Cavalier-Smith, T 2002Chloroplast evolution: Secondary symbiogenesis and multiple lossesCurr Biol12R62R64CrossRefPubMedGoogle Scholar
  8. Cavalier-Smith, T 2003Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae)Phil Trans R Soc Lond B Biol Sci358109133CrossRefGoogle Scholar
  9. Delwiche, CF 1999Tracing the thread of plastid diversity through the tapestry of lifeAm Nat154164177CrossRefGoogle Scholar
  10. Fast, NM, Kissinger, JC, Roos, DS, Keeling, PJ 2001Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastidsMol Biol Evol18418426PubMedGoogle Scholar
  11. Felsenstein, J 1985Confidence limits on phylogenies: an approach using bootstrapEvolution381624Google Scholar
  12. Felsenstein, J 2002PHYLIP (Phylogeny Inference Package) version 3.6a3. Distributed by the author, Department of Genome SciencesUniversity of WashingtonSeattleGoogle Scholar
  13. Harper, JT, Keeling, PJ 2003Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastidsMol Biol Evol2017301735CrossRefPubMedGoogle Scholar
  14. Hasegawa, M, Hashimoto, T, Adachi, J, Iwabe, N, Miyata, T 1993Early branchings in the evolution of eukaryotes: Ancient divergence of Entamoeba that lacks mitochondria revealed by protein sequence dataJ Mol Evol36380388PubMedGoogle Scholar
  15. Ishida, K, Green, BR 2002Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiontProc Natl Acad Sci USA9992949299CrossRefPubMedGoogle Scholar
  16. Itoh, T, Martin, W, Nei, M 2002Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbiontsProc Natl Acad Sci USA991294412948CrossRefPubMedGoogle Scholar
  17. Jones, DT, Taylor, WR, Thornton, JM 1992The rapid generation of mutation data matrices from protein sequencesCABIOS8275282PubMedGoogle Scholar
  18. Kimura, M 1983The neutral theory of molecular evolutionCambridge University PressCambridgeGoogle Scholar
  19. Kishino, H, Hasegawa, M 1989Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in HominoideaJ Mol Evol29170179PubMedGoogle Scholar
  20. Kishino, H, Miyata, T, Hasegawa, M 1990Maximum likelihood inference of protein phylogeny, and the origin of chloroplastsJ Mol Evol31151160Google Scholar
  21. Martin, W, Rujan, T, Richly, E, Hansen, A, Cornelsen, S, Lins, T, Leister, D, Stoebe, B, Hasegawa, M, Penny, D 2002Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleusProc Natl Acad Sci USA991224612251CrossRefPubMedGoogle Scholar
  22. Maul, JE, Lilly, JW, Cui, L, dePamphilis, CW, Miller, W, Harris, EH, Stern, DB 2002The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeatsPlant Cell1426592679CrossRefPubMedGoogle Scholar
  23. McFadden, GI 2001Primary and secondary endosymbiosis and the origin of plastidsJ Phycol37951959CrossRefGoogle Scholar
  24. Moreira, D, Le Guyader, H, Philippe, H 2000The origin of red algae and the evolution of chloroplastsNature4056972CrossRefPubMedGoogle Scholar
  25. Nikaido, I, Asamizu, E, Nakajima, M, Nakamura, Y, Saga, N, Tabata, S 2000Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis DNA Res7223227PubMedGoogle Scholar
  26. Nozaki, H, Matsuzakil, M, Takahara, M, Misumil, O, Kuroiwa, H, Hasegawa, M, Shin-i, T, Kohara, Y, Ogasawara, N, Kuroiwa, T 2003aThe phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastidsJ Mol Evol56485497CrossRefGoogle Scholar
  27. Nozaki, H, Ohta, N, Matsuzaki, M, Misumi, O, Kuroiwa, T 2003bPhylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequencesJ Mol Evol57377382CrossRefGoogle Scholar
  28. Ohta, N, Matsuzaki, M, Misumi, O, Miyagishima, S, Nozaki, H, Tanaka, K, Shin-i, T, Kohara, Y, Kuroiwa, T 2003Analyses of the complete nucleotide sequence of the plastid genome of the unicellular red alga Cyanidioschyzon merolae: Genome structure, gene organization, and gene contentDNA Res106777PubMedGoogle Scholar
  29. Rivero, F, Dislich, H, Glockner, G, Noegel, AA 2001The Dictyostelium discoideum family of Rho-related proteinsNucleic Acids Res2910681079CrossRefPubMedGoogle Scholar
  30. Saitou, N, Nei, M 1987The neighbor-joining method: A new method for reconstructing phylogenetic treesMol Biol Evol4406425PubMedGoogle Scholar
  31. Shimodaira, H, Hasegawa, M 1999Multiple comparisons of log-likelihoods with applications to phylogenetic inferenceMol Biol Evol1611141116Google Scholar
  32. Shimodaira, H, Hasegawa, M 2001CONSEL: For assessing the confidence of phylogenetic tree selectionBioinformatics1712461247CrossRefPubMedGoogle Scholar
  33. Stechmann, A, Cavalier-Smith, T 2002Rooting the eukaryote tree by using a derived gene fusionScience2978991CrossRefPubMedGoogle Scholar
  34. Stiller, JW, Duffield, ECS, Hall, BD 1998Amitochondriate amoebae and the evolution of DNA-dependent RNA polymerase IIProc Natl Acad Sci USA951176911774CrossRefPubMedGoogle Scholar
  35. Stiller, JW, Riley, J, Hall, BD 2001Are red algae plants? A critical evaluation of three key molecular data setsJ Mol Evol52527539PubMedGoogle Scholar
  36. Strimmer, K, Haeseler, A 1996Quartet puzzling: A quartet maximum-likelihood method for reconstructing tree topologiesMol Biol Evol13964969Google Scholar
  37. Swofford, DL 2002PAUP* 4.0: Phylogenetic analysis using parsimony, version 4.0b10Computer program distributed by Sinauer AssociatesFitchburgGoogle Scholar
  38. Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis toolsNucleic Acids Res2548764882CrossRefPubMedGoogle Scholar
  39. Yang, Z 1997PAML: A program package for phylogenetic analysis by maximum likelihoodCABIOS13555556PubMedGoogle Scholar
  40. Yoon, HS, Hackett, JD, Bhattacharya, D 2002aA single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosisProc Natl Acad Sci USA991172411729CrossRefGoogle Scholar
  41. Yoon, HS, Hackett, JD, Pinto, G, Bhattacharya, D 2002bThe single, ancient origin of chromist plastidsProc Natl Acad Sci USA991550715512CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Hisayoshi Nozaki
    • 1
  • Motomichi Matsuzaki
    • 2
  • Osami Misumi
    • 3
    • 4
  • Haruko Kuroiwa
    • 3
    • 4
  • Masami Hasegawa
    • 1
    • 5
  • Tetsuya Higashiyama
    • 1
  • Tadasu Shin-i
    • 6
  • Yuji Kohara
    • 6
  • Naotake Ogasawara
    • 7
  • Tsuneyoshi Kuroiwa
    • 3
  1. 1.Department of Biological SciencesGraduate School of Science, University of TokyoHongo, Bunkyo-kuJapan
  2. 2.Department of Biomedical ChemistryGraduate School of Medicine, University of TokyoHongo, Bunkyo-kuJapan
  3. 3.Department of Life ScienceCollege of Science, Rikkyo (St. Paul’s) UniversityNishiikebukuro, Toshima-kuJapan
  4. 4.Bio-oriented Technology Research Advancement Institution (BRAIN)Toranomon, Minato-kuJapan
  5. 5.The Institute of Statistical MathematicsMinato-kuJapan
  6. 6.Center for Genetic Resource InformationNational Institute of GeneticsMishimaJapan
  7. 7.Graduate School of Biological SciencesNara Institute of Science and TechnologyIkomaJapan

Personalised recommendations