Journal of Molecular Evolution

, Volume 58, Issue 5, pp 506–515 | Cite as

Phylogenetic Analysis of the Plant Endo-β-1,4-Glucanase Gene Family

  • Emanuele Libertini
  • Yi Li
  • Simon J. McQueen-MasonEmail author


Phylogenetic analysis of the endo-β-1,4-glucanase gene family of Arabidopsis and other plants revealed a clear distinction in three subfamilies (α, β, and γ). The α- and β-subfamily contains proteins believed to be involved in a number of physiological roles such as elongation, ripening, and abscission. The γ-subfamily is composed of proteins that are predicted to have a membrane-spanning domain and to be localized at the plasma membrane. Some of these proteins have been linked to cellulose biosynthesis by serving to hydrolyze a lipid-linked intermediate that acts as a primer for the elongation of β-glucan chains during cellulose synthesis at the plasma membrane. Similar glucanases are important in cellulose biosynthesis in bacteria. Searches in the genomes of unrelated organisms that make cellulose, such as Ciona intestinalis and Dictyostelium discoideum, revealed the presence of membrane-linked endo-β-1,4-glucanases and it is suggested that these might also have a role in cellulose synthesis.


Endoglucanase Gene families Arabidopsis Rice Cellulose biosynthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubourg, S, Lecharny, A, Bohlmann, J 2002Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana.Mol Genet Genom267730745CrossRefGoogle Scholar
  2. 2.
    Blanc, G, Hokamp, K, Wolfe, KH 2003A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome.Genome Res13137144Google Scholar
  3. 3.
    Brummell, DA, Catala, C, Lashbrook, CC, Bennett, AB 1997A membrane-anchored E-type endo-β-1,4-glucanase is localized on Golgi and plasma membrane of higher plants.Proc Natl Acad Sci USA9447944799Google Scholar
  4. 4.
    Carpita, N, McCann, M 2000The cell wall.Buchanan, BBGruissem, WJone, RL eds. Biochemistry and molecular biology of plants.American Society of Plant PhysiologistsRockville, MD52109Google Scholar
  5. 5.
    Cosgrove, DJ 1999Enzymes and other agents that enhance cell wall extensibility.Annu Rev Plant Physiol Plant Mol Biol50391417PubMedGoogle Scholar
  6. 6.
    Cutillas-Iturralde, A, Zarra, I, Fry, SC, Lorences, EP 1994Implication of persimmon fruit hemicellulose metabolism in the softening process. Importance of xyloglucan endotransglycosylase.Physiol Planta94169174CrossRefGoogle Scholar
  7. 7.
    Dehal, P, Satou, Y, Campbell, RK,  et al. 2002The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins.Science29821572167CrossRefPubMedGoogle Scholar
  8. 8.
    del Campillo, E, Bennett, AB 1996Pedicel breakstrength and cellulase gene expression during tomato flower abscission.Plant Physiol111813820PubMedGoogle Scholar
  9. 9.
    Delmer, DP 1999Cellulose biosynthesis: Exciting times for a difficult field of study.Annu Rev Plant Physiol Plant Mol Biol50245276Google Scholar
  10. 10.
    Eriksson, KEL, Blanchette, RA, Ander, P 1990Microbial and enzymatic degradation of wood components.Springer-VerlagBerlinGoogle Scholar
  11. 11.
    Ferrarese, L, Trainotti, L, Gattolin, S, Casadoro, G 1998Secretion, purification and activity of two recombinant pepper endo-beta-1,4-glucanases expressed in the yeast Pichia pastoris.FEBS Lett4222326CrossRefPubMedGoogle Scholar
  12. 12.
    Henrissat, B 1991A classification of glycoside hydrolases based on amino-acid sequence similarities.J Biochem280309316Google Scholar
  13. 13.
    Henrissat, B, Coutinho, PM, Davies, GJ 2001A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana.Plant Mol Biol475572CrossRefPubMedGoogle Scholar
  14. 14.
    Kellogg, EA 2001Evolutionary history of the grasses.Plant Physiol12511981205Google Scholar
  15. 15.
    Kumar, S, Tamura, K, Jakobsen, I, Nei, M 2001MEGA2: Molecular Evolutionary Genetics Analysis software.Arizona State UniversityTempeGoogle Scholar
  16. 16.
    Lane, DR, Wiedemeier, A, Peng, LC, Hofte, H, Vernhettes, S, Desprez, T, Hocart, CH, Birch, RJ, Baskin, TI, Burn, JE, Arioli, T, Betzner, AS, Williamson, RE 2001Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-β-1,4-glucanase to cellulose synthesis and cytokinesis in Arabidopsis.Plant Physiol126278288PubMedGoogle Scholar
  17. 17.
    Lashbrook, CC, Gonzalez-Bosch, C, Bennett, AB 1994Two divergent endo-β-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers.Plant Cell614851493PubMedGoogle Scholar
  18. 18.
    Li, Y, Darley, CP, Ongaro, V, Fleming, A, Schipper, O, Baldauf, SL, McQueen-Mason, SJ 2002Plant expansins are a complex multigene family with an ancient evolutionary origin.Plant Physiol128111CrossRefGoogle Scholar
  19. 19.
    Loopstra, CA, Mouradov, A, Vivian-Smith, A, Glassick, TV, Gale, BV, Southerton, SG, Marshall, H, Teasdale, RD 1998Two pine endo-β-1,4-glucanases are associated with rapidly growing reproductive structures.Plant Physiol116959967PubMedGoogle Scholar
  20. 20.
    Matthysse, AG, Lightfoot, R, White, S 1995Genes required for cellulose synthesis in Agrobacterium tumefaciens.J. Bacteriol17710691075PubMedGoogle Scholar
  21. 21.
    Mølhøj, M, Pagant, S, Höfte, H 2002Towards understanding the role of membrane-bound endo-β-1,4-glucanases in cellulose biosynthesis.Plant Cell Physiol4313991406CrossRefPubMedGoogle Scholar
  22. 22.
    Peng, L, Kawagoe, Y, Hogan, P, Delmer, D 2002Sitosterol-β-glucoside as primer for cellulose synthesis in plants.Science295147150PubMedGoogle Scholar
  23. 23.
    Redgwell, RC, Fry, SC 1993Xyloglucan endotransglycosylase activity increases during kiwifruit (Actinidia deliciosa) ripening.Plant Physiol10013181325Google Scholar
  24. 24.
    Rose, JKC, Bennett, AB 1999Cooperative disassembly of the cellulose-xyloglucan network of plat cell walls: Parallels between cell expansion and fruit ripening.Trends Plant Sci4176183PubMedGoogle Scholar
  25. 25.
    Sanderfoot, AA, Assaad, FF, Raikhel, NV 2000The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors.Plant Physiol12415581569CrossRefPubMedGoogle Scholar
  26. 26.
    Sato, S, Kato, T, Kakegawa, K, Ishii, T, Liu, YG, Awano, T, Takabe, K, Nishiyama, Y, Kuga, S, Sato, S, Nakamura, Y, Tabata, S, Shibata, D 2001Role of the putative membrane-bound endo-β-1,4-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana.Plant Cell Physiol42251263PubMedGoogle Scholar
  27. 27.
    Trainotti, L, Spolaore, S, Pavanello, A, Baldan, B, Casadoro, G 1999A novel E-type endo-beta-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits.Plant Mol Biol40323332CrossRefPubMedGoogle Scholar
  28. 28.
    Vincentz, M, Bandeira-Kobarg, C, Gauer, L, Schlogl, P, Leite, A 2003Evolutionary pattern of angiosperm bZIP factors homologous to the maize Opaque2 regulatory protein.J Mol Evol56105116CrossRefPubMedGoogle Scholar
  29. 29.
    Yuan, S, Wu, Y, Cosgrove, DJ 2001A fungal endoglucanase with plant cell wall extension activity.Plant Physiol127324333PubMedGoogle Scholar
  30. 30.
    Yung, MH, Schaffer, R, Putterill, J 1999Identification of genes expressed during early Arabidopsis carpel development by mRNA differential display: Characterisation of a novel endo-β-1,4-D-glucanase gene.Plant J17203208CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2004

Authors and Affiliations

  • Emanuele Libertini
    • 1
  • Yi Li
    • 1
  • Simon J. McQueen-Mason
    • 1
    Email author
  1. 1.CNAP, Biology DepartmentUniversity of York, P.O. Box 373, York YO10 5YWUK

Personalised recommendations