Journal of Molecular Evolution

, Volume 58, Issue 4, pp 460–465 | Cite as

Concerted Evolution and Higher-Order Repeat Structure of the 1.709 (Satellite IV) Family in Bovids

  • William S. Modi
  • Sergey Ivanov
  • Daniel S. Gallagher
Article

Abstract

The 1.709 or satellite IV repeated DNA family originally isolated from the domestic cow was analyzed using Southern blotting, pulsed field gel electrophoresis, fluorescence in situ hybridization, and DNA sequencing in species belonging to the genera Bos, Bison, Bubalus, Syncerus, Boselaphus, and Tragelaphus. Hybridization indicates that the family has been amplified in Bos, Bison, Bubalus, and Syncerus but not in Boselaphus or Tragelaphus. Pericentromeric, higher-order repeat substructure exists in all species, with multimeric arrays ranging in size from 10 to 1500 kb. Sequence analysis of a 492-bp PCR product revealed comparable levels (0.2–4.5%) of intra- and interspecific divergence when species of Bos and Bison were compared, supporting the idea that species of these two genera should be recognized under the genus Bos. Alternatively, all Syncerus sequences cluster as a monophyletic group on an evolutionary tree and differ from those of Bos/Bison by about 13%. Comparing these findings with the fossil record indicates that concerted evolution has occurred since Bos/Bison and Syncerus last shared a common ancestor (5.0 MYA) but before the radiation of the genus Bos (2.5 MYA): GenBank accession numbers AY517856-AY517904.

Keywords

Concerted evolution Satellite DNA Artiodactyls Pulsed field gels 

References

  1. 1.
    Elder, Jr JF, Turner, BJ 1994Concerted evolution at the population level: Pupfish HindIII satellite DNA sequences.Proc Natl Acad Sci USA91994998PubMedGoogle Scholar
  2. 2.
    Gallagher, Jr DS, Womack, JE 1992Chromosome conservation in the Bovidae.J Hered83287298PubMedGoogle Scholar
  3. 3.
    Groves, CP 1981Systematic relationships in the Bovini (Artiodactyla, Bovidae).Z Zool Syst Evolut-forsch19264278Google Scholar
  4. 4.
    Ivanov, SV, Modi, WS 1996Molecular characterization of the complex sex-chromosome heterochromatin in the rodent Microtus chrotorrhinus.Cytogenet Cell Genet754956PubMedGoogle Scholar
  5. 5.
    Jobse, C, Buntjer, JB, Haagsma, N, Breukelman, HJ, Beintema, JJ, Lenstra, JA 1995Evolution and recombination of bovine DNA repeats.J Mol Evol41277283PubMedGoogle Scholar
  6. 6.
    Kumar, S, Tamura, K, Jakobsen, IB, Nei, M 2001MEGA2: Molecular evolutionary genetics analysis software.Bioinformatics1712441245PubMedGoogle Scholar
  7. 7.
    Li, YC, Lee, C, Hseu, TH, Li, SY, Lin, CC, Hsu, TH 2000Direct visualization of the genome distribution and organization of two cervid centromeric satellite DNA families.Cytogenet Cell Genet89192198PubMedGoogle Scholar
  8. 8.
    Miyamoto, MM, Tanhauser, SM, Laipis, PJ 1989Systematic relationships in the artiodactyl tribe Bovini (family Bovidae), as determined from mitochondrial DNA sequences.Syst Zool38342349Google Scholar
  9. 9.
    Modi, WS 1993aComparative analyses of heterochromatin in Microtus: Sequence heterogeneity and localized expansion and contraction of satellite DNA arrays.Cytogenet Cell Genet62142148Google Scholar
  10. 10.
    Modi, WS 1993bHeterogeneity in the concerted evolution process of a tandem satellite array in meadow mice (Microtus).J Mol Evol374856Google Scholar
  11. 11.
    Modi, WS, Gallagher, DS, Womack, JE 1996Molecular organization and chromosomal localization of six highly repeated DNA families in the bovine genome.Anim Biotech4143161Google Scholar
  12. 12.
    Modi, WS, Gallagher, DS, Womack, JE 1993Evolutionary histories of highly repeated DNA families among the Artiodactyla (Mammalia).J Mol Evol42337349Google Scholar
  13. 13.
    Mravinac, B, Plohl, M, Mestrovic, N, Ugarkovic, D 2002Sequence of PRAT satellite DNA “frozen” in some coleopteran species.J Mol Evol54774782CrossRefPubMedGoogle Scholar
  14. 14.
    Nijman, IJ, Lenstra, JA 2001Mutation and recombination in cattle satellite DNA: A feedback model for the evolution of satellite DNA repeats.J Mol Evol52361371PubMedGoogle Scholar
  15. 15.
    Pech, M, Streeck, RE, Zachau, HG 1979Patchwork structure of a bovine satellite DNA.Cell18883893PubMedGoogle Scholar
  16. 16.
    Poschl, E, Streeck, RE 1980Prototype sequence of bovine 1.720 satellite DNA.J Mol Biol143147153PubMedGoogle Scholar
  17. 17.
    Robinson, TJ, Wittekindt, O, Pasantes, JJ, Modi, WS, Schempp, W, Morris-Rosendahl, DJ 2002Stable methylation patterns in interspecific antelope hybrids and the characterization and localization of a satellite fraction in the Alcelaphini and Hippotragini.Chromosome Res8635643CrossRefGoogle Scholar
  18. 18.
    Skowronski, J, Plucienniczak, A, Bednarek, A, Jaworski, J 1984Bovine 1.709 satellite. Recombination hotspots and dispersed repeated sequences.J Mol Biol177399416PubMedGoogle Scholar
  19. 19.
    Swofford, D 2001PAUP*, phylogenetic analysis using parsimony.Sinauer AssociatesSunderland, MAGoogle Scholar
  20. 20.
    Wall, AD, Davis, SK, Read, BM 1992Phylogenetic relationships in subfamily bovinae (Mammalia–Artiodactyla) based upon ribosomal DNA.J Mammal73262275Google Scholar
  21. 21.
    Warburton, PE, Haaf, T, Gosden, J, Lawson, D, Willard, HF 1996Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes.Genomics33220228CrossRefPubMedGoogle Scholar
  22. 22.
    Willard, HF 1985Chromosome-specific organization of human alpha satellite DNA.Am J Hum Genet37524532PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2004

Authors and Affiliations

  • William S. Modi
    • 1
  • Sergey Ivanov
    • 1
  • Daniel S. Gallagher
    • 2
  1. 1.Basic Research ProgramSAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702-1201USA
  2. 2.Department of Animal ScienceTexas A&M University, College Station, TX 77843USA

Personalised recommendations