Journal of Molecular Evolution

, Volume 58, Issue 4, pp 442–448 | Cite as

Origin of Toll-Like Receptor-Mediated Innate Immunity

  • Stefan M. Kanzok
  • Ngo T. Hoa
  • Mariangela Bonizzoni
  • Coralia Luna
  • Yaming Huang
  • Anna R. Malacrida
  • Liangbiao Zheng
Article

Abstract

Toll-related receptors (TLR) have been found in four animal phyla: Nematoda, Arthropoda, Echinodermata, and Chordata. No TLR has been identified thus far in acoelomates. TLR genes play a pivotal role in the innate immunity in both fruit fly and mammals. The prevailing view is that TLR-mediated immunity is ancient. The two pseudocoelomate TLRs, one each from Caenorhabditis elegans and Strongyloides stercoralis, were distinct from the coelomate ones. Further, the only TLR gene (Tol-1) in Ca. elegans did not appear to play a role in innate immunity. We argue that TLR-mediated innate immunity developed only in the coelomates, after they split from pseudocoelomates and acoelomates. We hypothesize that the function of TLR-mediated immunity is to prevent microbial infection in the body cavity present only in the coelomates. Phylogenetic analysis showed that almost all arthropod TLRs form a separate cluster from the mammalian counterparts. We further hypothesize that TLR-mediated immunity developed independently in the protostomia and deuterostomia coelomates.

Keywords

Toll Innate immunity Coelomate Pseudocoelomate Antimicrobial peptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful for generous gifts from U. Schmidt-Ott (for the Clogmia genomic cDNA library), D. Fish (for Culex pipiens), G. Yan (for Tribolium samples), and G. Lanzaro, and L. Munstermann for other insect species. This work is supported in part by NIH Grant R01A43035 and an award from the Burroughs Wellcome Fund to L.Z. S.M.K. was supported in part by the DFG (Deutsche Forschungsgemeinschaft) and N.T.H. was supported by the Wellcome Trust.

References

  1. 1.
    Aballay, A, Drenkard, E, Hilbun, LR, Ausubel, FM 2003 Caenorhabditis elegans innate immune response triggered by Salmonella enterica requires intact LPS and is mediated by a MAPK signaling pathway.Curr Biol134752Google Scholar
  2. 2.
    Aguinaldo, AM, Turbeville, JM, Linford, LS, Rivera, MC, Garey, JR, Raff, RA, Lake, JA 1997Evidence for a clade of nematodes, arthropods and other moulting animals.Nature387489493Google Scholar
  3. 3.
    Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ 1990Basic local alignment search tool.J Mol Biol215403410Google Scholar
  4. 4.
    Anderson, KV, Schneider, DS, Morisato, D, Jin, Y, Ferguson, EL 1992Extracellular morphogens in Drosophila embryonic dorsal-ventral patterning.Cold Spring Harb Symp Quant Biol57409417Google Scholar
  5. 5.
    Beutler, B, Rehli, M 2002Evolution of the TIR, tolls and TLRs: functional inferences from computational biology.Curr Top Microbiol Immunol270121Google Scholar
  6. 6.
    Christophides, GK, Zdobnov, E, Barillas-Mury, C,  et al. 2002Immunity-related genes and gene families in Anopheles gambiae.Science298159165Google Scholar
  7. 7.
    Dunne, A, O’Neill, LA 2003The interleukin-1 receptor/Toll-like receptor superfamily: Signal transduction during inflammation and host defense.Sci STKE2003re3Google Scholar
  8. 8.
    Fedorov, A, Cao, X, Saxonov, S, de Souza, SJ, Roy, SW, Gilbert, W 2001Intron distribution difference for 276 ancient and 131 modern genes suggests the existence of ancient introns.Proc Natl Acad Sci USA981317713182Google Scholar
  9. 9.
    Friedman, R, Hughes, AL 2002Molecular evolution of the NF-kappaB signaling system.Immunogenetics53964974Google Scholar
  10. 10.
    Gilbert, W, de Souza, SJ, Long, M 1997Origin of genes.Proc Natl Acad Sci USA9476987703Google Scholar
  11. 11.
    Hoffmann, JA, Kafatos, FC, Janeway, CA, Ezekowitz, RA 1999Phylogenetic perspectives in innate immunity.Science28413131318Google Scholar
  12. 12.
    Hu, W, Yan, Q, Shen, DK,  et al. 2003Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource.Nat Genet35139147Google Scholar
  13. 13.
    Hughes, AL 1998Protein phylogenies provide evidence of a radical discontinuity between arthropod and vertebrate immune systems.Immunogenetics47283296Google Scholar
  14. 14.
    Imamura, M, Yamakawa, M 2002Molecular cloning and expression of a Toll receptor gene homologue from the silkworm, Bombyx mori.Biochim Biophys Acta1576246254Google Scholar
  15. 15.
    Kurz, CL, Ewbank, JJ 2003 Caenorhabditis elegans: An emerging genetic model for the study of innate immunity.Nat Rev Genet4380390Google Scholar
  16. 16.
    Lemaitre, B, Nicolas, E, Michaut, L, Reichhart, JM, Hoffmann, JA 1996The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults.Cell86973983Google Scholar
  17. 17.
    Luna, C, Wang, X, Huang, Y, Zhang, J, Zheng, L 2002Characterization of four Toll related genes during development and immune responses in Anopheles gambiae.Insect Biochem Mol Biol3211711179Google Scholar
  18. 18.
    Luna, C, Hoa, NT, Zhang, J, Kanzok, SM, Brown, SE, Imler, JL, Knudson, DL, Zheng, L 2003Characterization of three Toll-like genes from mosquito Aedes aegypti.Insect Mol Biol126774Google Scholar
  19. 19.
    Luo, C, Zheng, L 2000Independent evolution of Toll and related genes in insects and mammals.Immunogenetics519298Google Scholar
  20. 20.
    Luo, C, Shen, B, Manley, JL, Zheng, L 2001Tehao functions in the Toll pathway in Drosophila melanogaster: Possible roles in development and innate immunity.Insect Mol Biol10457461Google Scholar
  21. 21.
    Maxton-Kuchenmeister, J, Handel, K, Schmidt-Ott, U, Roth, S, Jackle, H 1999Toll homologue expression in the beetle Tribolium suggests a different mode of dorsoventral patterning than in drosophila embryos.Mech Dev83107114Google Scholar
  22. 22.
    Medzhitov, R, Janeway, Jr CA 1998An ancient system of host defense.Curr Opin Immunol101215Google Scholar
  23. 23.
    Michel, T, Reichhart, JM, Hoffmann, JA, Royet, J 2001 Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein.Nature414756759Google Scholar
  24. 24.
    Nielsen, C 2001Animal evolution: Interrelationships of the living phyla.Oxford University PressOxfordGoogle Scholar
  25. 25.
    Ooi, JY, Yagi, Y, Hu, X, Ip, YT 2002The Drosophila Toll-9 activates a constitutive antimicrobial defense.EMBO Rep38278Google Scholar
  26. 26.
    Oshiumi, H, Tsujita, T, Shida, K, Matsumoto, M, Ikeo, K, Seya, T 2003Prediction of the prototype of the human Toll-like receptor gene family from the pufferfish, Fugu rubripes, genome.Immunogenetics54791800Google Scholar
  27. 27.
    Palmer, JD, Logsdon, Jr JM 1991The recent origins of introns.Curr Opin Gene Dev1470477Google Scholar
  28. 28.
    Pujol, N, Link, EM, Liu, LK, Kurz, CL, Alloing, G, Tan, MW, Ray, KP, Solan, R, Johnson, CD, Ewbank, JJ 2001A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans.Curr Biol11809821Google Scholar
  29. 29.
    Riddle, D, Blumenthal, T, Meyer, B, Priess, J 1997C. elegans II.. Cold Spring Harbor Laboratory PressPlainview, NYGoogle Scholar
  30. 30.
    Roy, SW, Lewis, BP, Fedorov, A, Gilbert, W 2001Footprints of primordial introns on the eukaryotic genome.Trends Genet17496501Google Scholar
  31. 31.
    Rzhetsky, A, Ayala, FJ, Hsu, LC, Chang, C, Yoshida, A 1997Exon/intron structure of aldehyde dehydrogenase genes supports the “introns-late” theory.Proc Natl Acad Sci USA9468206825Google Scholar
  32. 32.
    Sambrook, J, Fritsch, EF, Maniatis, T 1989Molecular cloning: A laboratory manual.Cold Spring Harbor Laboratory PressCold Spring Harbor, NYGoogle Scholar
  33. 33.
    Schultz, J, Copley, RR, Doerks, T, Ponting, CP, Bork, P 2000SMART: A web-based tool for the study of genetically mobile domains.Nucleic Acids Res28231234Google Scholar
  34. 34.
    Tauszig, S, Jouanguy, E, Hoffmann, JA, Imler, J-L 2000Toll related receptors and the control of antimicrobial peptide expression in Drosophila.Proc Natl Acad Sci USA971052010525Google Scholar
  35. 35.
    Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res2548764852Google Scholar
  36. 36.
    Wheeler, WC, Whiting, M, Wheeler, QD, Carpenter, JM 2001The phylogeny of the extant hexapod orders.Cladistics17113169Google Scholar
  37. 37.
    Yamagata, M, Merlie, JP, Sanes, JR 1994Interspecific comparisons reveal conserved features of the Drosophila Toll protein.Gene139223228Google Scholar

Copyright information

© Springer-Verlag New York Inc. 2004

Authors and Affiliations

  • Stefan M. Kanzok
    • 1
  • Ngo T. Hoa
    • 1
  • Mariangela Bonizzoni
    • 2
  • Coralia Luna
    • 1
  • Yaming Huang
    • 1
  • Anna R. Malacrida
    • 2
  • Liangbiao Zheng
    • 1
  1. 1.Yale University School of Medicine, Epidemiology and Public Health, 60 College Street, New Haven, CT 06520USA
  2. 2.Department of Animal BiologyUniversity of Pavia, Piazza Botta 9, 27100 PaviaItaly

Personalised recommendations