Journal of Molecular Evolution

, Volume 58, Issue 3, pp 314–321

Ancestral Loss of Short Wave-Sensitive Cone Visual Pigment in Lorisiform Prosimians, Contrasting with Its Strict Conservation in Other Prosimians



Mammals are basically dichromatic in color vision, possessing middle to long wave-sensitive (M/LWS) and the short wave-sensitive (SWS) cone opsins in the retina, whereas some nocturnal mammals lack functional SWS opsins. Prosimians, primitive primates consisting of three extant groups (Lorisiformes, Lemuriformes, and Tarsiiformes), include many nocturnal species. Among nocturnal prosimians, a species of lorisiforms, the greater galago (Otolemur crassicaudatus), is known to lack a functional SWS opsin gene, while lemuriforms and tarsiiforms appear to retain SWS opsins in the retina. It has not been established, however, whether the loss of SWS opsin is a universal phenomenon among lorisiforms and whether the functional SWS opsin genes of lemuriforms and tarsiiforms are under strict or relaxed selective constraint. To gain better insight into an association between nocturnality and loss of SWS function, we isolated and sequenced the SWS opsin genes from two species of lorisiforms, the slow loris (Nycticebus coucang; nocturnal) and the lesser galago (Galago senegalensis; nocturnal), and one species each of lemuriforms and tarsiiforms, the brown lemur (Eulemur fulvus; cathemeral) and the western tarsier (Tarsius bancanus; nocturnal), respectively. Our sequence analysis revealed that (1) the SWS opsin gene was disrupted in the common ancestor of galagids and lorisids and (2) the rate of nonsynonymous nucleotide substitution has been kept significantly lower than that of synonymous substitution in tarsier and lemur, demonstrating the presence of strict selective constraint on the SWS opsin genes in tarsiiforms and lemuriforms.


Blue cone pigment Prosimian Galago senegalensis Nycticebus coucang Tarsius bancanus Nocturnal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahnelt, PK, Kolb, H 2000The mammalian photoreceptor mosaic-adaptive design.Prog Retin Eye Res19711777CrossRefPubMedGoogle Scholar
  2. 2.
    Calderone, JB, Jacobs, GH 1999Cone receptor variations and their functional consequences in two species of hamster.Vis Neurosci165363CrossRefPubMedGoogle Scholar
  3. 3.
    Chiu, MI, Zack, DJ, Wang, Y, Nathans, J 1994Murine and bovine blue cone pigment genes: cloning and characterization of two new members of the S family of visual pigments.Genomics21440443CrossRefPubMedGoogle Scholar
  4. 4.
    Dkhissi-Benyahya, O, Szel, A, Degrip, WJ, Cooper, HM 2001Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus).J Comp Neurol438490504CrossRefPubMedGoogle Scholar
  5. 5.
    Ebrey, T, Koutalos, Y 2001Vertebrate photoreceptors.Prog Retin Eye Res204994CrossRefPubMedGoogle Scholar
  6. 6.
    Fasick, JI, Cronin, TW, Hunt, DM, Robinson, PR 1998The visual pigments of the bottlenose dolphin (Tursiops truncatus).Vis Neurosci15643651CrossRefPubMedGoogle Scholar
  7. 7.
    Fleagle, JG 1999Primate adaptation and evolution.Academic PressSan DiegoGoogle Scholar
  8. 8.
    Goodman, M, Porter, CA, Czelusniak, J, Page, SL, Schneider, H, Shoshani, J, Gunnell, G, Groves, CP 1998Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence.Mol Phylogenet Evol9585598CrossRefPubMedGoogle Scholar
  9. 9.
    Hendrickson, A, Djajadi, HR, Nakamura, L, Possin, DE, Sajuthi, D 2000Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography.J Comp Neurol424718730CrossRefPubMedGoogle Scholar
  10. 10.
    Jacobs, GH 1993The distribution and nature of colour vision among the mammals.Biol Rev68413471CrossRefPubMedGoogle Scholar
  11. 11.
    Jacobs, GH 1999

    Vision and behavior in primates.

    Archer, SNDjamgoz, MBALoew, ERPartridge, JCVallerga, S eds. Adaptive mechanisms in the ecology of vision.Kluwer AcademicDordrecht629650
    Google Scholar
  12. 12.
    Jacobs, GH, Deegan 2nd, JF 1992Cone photopigments in nocturnal and diurnal procyonids.J Comp Physiol [A]171351358Google Scholar
  13. 13.
    Jacobs, GH, Deegan, JF 1993Photopigments underlying color vision in ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus).Am J Primatol30243256Google Scholar
  14. 14.
    Jacobs, GH, Neitz, M, Neitz, J 1996Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate.Proc R Soc Lond B Biol Sci263705710Google Scholar
  15. 15.
    Karnik, SS, Sakmar, TP, Chen, HB, Khorana, HG 1988Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin.Proc Natl Acad Sci USA8584598463PubMedGoogle Scholar
  16. 16.
    Kawamura, S, Hirai, M, Takenaka, O, Radlwimmer, FB, Yokoyama, S 2001Genomic and spectral analyses of long to middle wavelength-sensitive visual pigments of common marmoset (Callithrix jacchus).Gene2694551PubMedGoogle Scholar
  17. 17.
    Kumar S, Tamura K, Jacobsen IB, Nei M (2001) MEGA2, molecular evolutionary genetics analysis. Arizona State University, TempleGoogle Scholar
  18. 18.
    Levenson, DH, Dizon, A 2003Genetic evidence for the ancestral loss of short-wavelength-sensitive cone pigments in mysticete and odontocete cetaceans.Proc R Soc Lond B Biol Sci270673679Google Scholar
  19. 19.
    Li, WH 1993Unbiased estimation of the rates of synonymous and nonsynonymous substitution.J Mol Evol369699PubMedGoogle Scholar
  20. 20.
    Liman, ER, Innan, H 2003Relaxed selective pressure on an essential component of pheromone transduction in primate evolution.Proc Natl Acad Sci USA10033283332CrossRefPubMedGoogle Scholar
  21. 21.
    Macdonald, DW 1984The Encyclopaedia of Animals, Vol. 3.Equinox (Oxford) Ltd.OxfordGoogle Scholar
  22. 22.
    Nathans, J, Thomas, D, Hogness, DS 1986Molecular genetics of human color vision: the genes encoding blue, green, and red pigments.Science232193202PubMedGoogle Scholar
  23. 23.
    Nei, M, Kumar, S 2000Molecular evolution and phylogenetics.Oxford University PressNew YorkGoogle Scholar
  24. 24.
    Ohguro, H, Johnson, RS, Ericsson, LH, Walsh, KA, Palczewski, K 1994Control of rhodopsin multiple phosphorylation.Biochemistry3310231028PubMedGoogle Scholar
  25. 25.
    Pamilo, P, Bianchi, NO 1993Evolution of the Zfx and Zfy genes: rates and interdependence between the genes.Mol Biol Evol10271281PubMedGoogle Scholar
  26. 26.
    Peichl, L, Moutairou, K 1998Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia).Eur J Neurosci1025862594PubMedGoogle Scholar
  27. 27.
    Peichl, L, Behrmann, G, Kroger, RH 2001For whales and seals the ocean is not blue: a visual pigment loss in marine mammals.Eur J Neurosci1315201528PubMedGoogle Scholar
  28. 28.
    Saitou, N, Nei, M 1987The neighbor-joining method: a new method for reconstructing phylogenetic trees.Mol Biol Evol4406425PubMedGoogle Scholar
  29. 29.
    Sakmar, TP, Franke, RR, Khorana, HG 1989Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin.Proc Natl Acad Sci USA8683098313PubMedGoogle Scholar
  30. 30.
    Sambrook, J, Russel, DW 2001Molecular cloning. A laboratory manual.Cold Spring Harbor Laboratory PressCold Spring Harbor, NYGoogle Scholar
  31. 31.
    Shimmin, LC, Mai, P, Li, WH 1997Sequences and evolution of human and squirrel monkey blue opsin genes.J Mol Evol44378382PubMedGoogle Scholar
  32. 32.
    Shimmin, LC, Miller, J, Tran, HN, Li, WH 1998Contrasting levels of DNA polymorphism at the autosomal and X-linked visual color pigment loci in humans and squirrel monkeys.Mol Biol Evol15449455PubMedGoogle Scholar
  33. 33.
    Szel, A, Rohlich, P, Caffe, AR, van Veen, T 1996Distribution of cone photoreceptors in the mammalian retina.Microsci Res Tech35445462Google Scholar
  34. 34.
    Tajima, F 1993Simple methods for testing the molecular evolutionary clock hypothesis.Genetics135599607PubMedGoogle Scholar
  35. 35.
    Tamura, K, Nei, M 1993Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.Mol Biol Evol10512526PubMedGoogle Scholar
  36. 36.
    Thompson, JD, Higgins, DG, Gibson, TJ 1994CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res2246734680PubMedGoogle Scholar
  37. 37.
    Wang, JK, McDowell, JH, Hargrave, PA 1980Site of attachment of 11-cis-retinal in bovine rhodopsin.Biochemistry1951115117PubMedGoogle Scholar
  38. 38.
    Wikler, KC, Rakic, P 1990Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates.J Neurosci1033903401PubMedGoogle Scholar
  39. 39.
    Yokoyama, S 2000Molecular evolution of vertebrate visual pigments.Prog Retin Eye Res19385419PubMedGoogle Scholar
  40. 40.
    Zhao, X, Haeseleer, F, Fariss, RN, Huang, J, Baehr, W, Milam, AH, Palczewski, K 1997Molecular cloning and localization of rhodopsin kinase in the mammalian pineal.Vis Neurosci14225232PubMedGoogle Scholar
  41. 41.
    Zhukovsky, EA, Oprian, DD 1989Effect of carboxylic acid side chains on the absorption maximum of visual pigments.Science246928930PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2004

Authors and Affiliations

  1. 1.Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of Tokyo, Seimeitou 502, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562Japan

Personalised recommendations