Journal of Molecular Evolution

, Volume 58, Issue 3, pp 291–303 | Cite as

Two Types of FtsZ Proteins in Mitochondria and Red-Lineage Chloroplasts: The Duplication of FtsZ Is Implicated in Endosymbiosis

  • Shin-ya Miyagishima
  • Hisayoshi Nozaki
  • Keishin Nishida
  • Keiji Nishida
  • Motomichi Matsuzaki
  • Tsuneyoshi Kuroiwa


The ancestors of plastids and mitochondria were once free-living bacteria that became organelles as a result of endosymbiosis. According to this theory, a key bacterial division protein, FtsZ, plays a role in plastid division in algae and plants as well as in mitochondrial division in lower eukaryotes. Recent studies have shown that organelle division is a process that combines features derived from the bacterial division system with features contributed by host eukaryotic cells. Two nonredundant versions of FtsZ, FtsZ1 and FtsZ2, have been identified in green-lineage plastids, whereas most bacteria have a single ftsZ gene. To examine whether there is also more than one type of FtsZ in red-lineage chloroplasts (red algal chloroplasts and chloroplasts that originated from the secondary endosymbiosis of red algae) and in mitochondria, we obtained FtsZ sequences from the complete sequence of the primitive red alga Cyanidioschyzon merolae and the draft sequence of the stramenopile (heterokont) Thalassiosira pseudonana. Phylogenetic analyses that included known FtsZ proteins identified two types of chloroplast FtsZ in red algae (FtsZA and FtsZB) and stramenopiles (FtsZA and FtsZC). These analyses also showed that FtsZB emerged after the red and green lineages diverged, while FtsZC arose by the duplication of an ftsZA gene that in turn descended from a red alga engulfed by the ancestor of stramenopiles. A comparison of the predicted proteins showed that like bacterial FtsZ and green-lineage FtsZ2, FtsZA has a short conserved C-termmal sequence (the C-terminal core domain), whereas FtsZB and FtsZC, like the green-lineage FtsZ1, lack this sequence. In addition, the Cyanidioschyzon and Dictyostelium genomes encode two types of mitochondrial FtsZ proteins, one of which lacks the C-terminal variable domain. These results suggest that the acquisition of an additional FtsZ protein with a modified C terminus was common to the primary and secondary endosymbioses that produced plastids and that this also occurred during the establishment of mitochondria, presumably to regulate the multiplication of these organelles.


Chloroplast division Endosymbiosis FtsZ Mitochondrial division Red algae Stramenopiles (Heterokonts) 



We are deeply indebted to Dr. E. Virginia Armbrust, School of Oceanography, University of Washington, and the U.S. Department of Energy Joint Genome Institute for permission to use the Thalassiosira sequences before publication. This work was supported by a research fellowship from the Japanese Society for the Promotion of Science for Young Scientists (No. 7498 to S.M.) and by grants from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (Nos. 12446222 and 12874111 to T.K.) and from the Program for the Promotion of Basic Research Activities for Innovative Biosciences (to T.K.).


  1. 1.
    Adachi, J, Hasegawa, M 1996MOLPHY version 2.3: Programs for molecular phylogenetics based on maximum likelihood.Comput Sci Monogr281150Google Scholar
  2. 2.
    Allen, MB 1959Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte.Arch Microbiol32270277Google Scholar
  3. 3.
    Araki, Y, Takio, S, Ono, K, Takano, H 2003Two types of plastid ftsZ genes in the liverwort Marchantia polymorpha.Protoplasma221163173PubMedGoogle Scholar
  4. 4.
    Beech, PL, Gilson, PR 2000FtsZ and organelle division in Protists.Protist1511116PubMedGoogle Scholar
  5. 5.
    Beech, PL, Nheu, T, Schultz, T, Herbert, S, Lithgow, T, Gilson, PR, McFadden, GI 2000Mitochondrial FtsZ in a chromophyte alga.Science28712761279CrossRefPubMedGoogle Scholar
  6. 6.
    Bramhill, D 1997Bacterial cell division.Annu Rev Cell Dev Biol13395424CrossRefPubMedGoogle Scholar
  7. 7.
    Cavalier-Smith, T 2000Membrane heredity and early chloroplast evolution.Trends Plant Sci5174182CrossRefPubMedGoogle Scholar
  8. 8.
    Colletti, KS, Tattersall, EA, Pyke, KA, Froelich, JE, Stokes, KD, Osteryoung, KW 2000A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus.Curr Biol10507516CrossRefPubMedGoogle Scholar
  9. 9.
    Dayhoff, MO, Schwartz, RM, Orcutt, BC 1978A model of evolutionary change in proteins.Dayhoff, MO eds. Atlas of protein sequence and structure, Vol 5, Suppl 3.National Biomedical Research FoundationWashington, DC345352Google Scholar
  10. 10.
    Din, N, Quardokus, EM, Sackett, MJ, Brun, YV 1998Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA.Mol Microbiol2710511063CrossRefPubMedGoogle Scholar
  11. 11.
    Douglas, SE, Murphy, CA, Spencer, DF, Gray, MW 1991Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes.Nature350148151CrossRefPubMedGoogle Scholar
  12. 12.
    Fast, NM, Kissinger, JC, Roos, DS, Keeling, PJ 2001Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids.Mol Biol Evol18418426PubMedGoogle Scholar
  13. 13.
    Felsenstein, J 1993PHYLIP (phylogeny inference package) version 3.5c. Distributed by the author. Department of Genetics,University of WashingtonSeattleGoogle Scholar
  14. 14.
    Fraunholz, MJ, Moerschel, E, Maier, UG 1998The chloroplast division protein FtsZ is encoded by a nucleomorph gene in cryptomonads.Mol Gen Genet260207211CrossRefPubMedGoogle Scholar
  15. 15.
    Fulgosi, H, Gerdes, L, Westphal, S, Glockmann, C, Soll, J 2002Cell and chloroplast division requires ARTEMIS.Proc Natl Acad Sci USA991150111506CrossRefPubMedGoogle Scholar
  16. 16.
    Gao, H, Kadirjan-Kalbach, D, Froehlich, JE, Osteryoung, KW 2003ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery.Proc Natl Acad Sci USA10043284333CrossRefPubMedGoogle Scholar
  17. 17.
    Gilson, PR, Beech, PL 2001Cell division protein FtsZ: Running rings around bacteria, chloroplasts and mitochondria.Res Microbiol152310CrossRefPubMedGoogle Scholar
  18. 18.
    Gray, MW 1999Evolution of organellar genomes.Curr Opin Genet Dev9678687PubMedGoogle Scholar
  19. 19.
    Hale, CA, Rhee, AC, de Boer, PA 2000ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains.J Bacteriol18251535166PubMedGoogle Scholar
  20. 20.
    Hasegawa, M, Kishino, H 1994Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree.Mol Biol Evol11142145Google Scholar
  21. 21.
    Hashimoto, H 2003Plastid division: its origins and evolution.Int Rev Cytol2226398PubMedGoogle Scholar
  22. 22.
    Itoh, R, Fujiwara, M, Nagata, N, Yoshida, S 2001A chloroplast protein homologous to the eubacterial topological specificity factor minE plays a role in chloroplast division.Plant Physiol12716441655PubMedGoogle Scholar
  23. 23.
    Jones, DT, Taylor, WR, Thornton, JM 1992The rapid generation of mutation data matrices from protein sequences.Comput Appl Biosci8275282PubMedGoogle Scholar
  24. 24.
    Kimura, M 1983The neutral theory of molecular evolution.Cambridge University PressCambridge, UKGoogle Scholar
  25. 25.
    Kishino, H, Hasegawa, M 1989Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea.J Mol Evol29170179PubMedGoogle Scholar
  26. 26.
    Kishino, H, Miyata, T, Hasegawa, M 1990Maximum likelihood inference of protein phylogeny, and the origin of chloroplasts.J Mol Evol31151160Google Scholar
  27. 27.
    Koksharova, OA, Wolk, CP 2002A novel gene that bears a DnaJ motif influences cyanobacterial cell division.J Bacteriol18455245528PubMedGoogle Scholar
  28. 28.
    Kuroiwa, H, Mori, T, Takahara, M, Miyagishima, S, Kuroiwa, T 2002Chloroplast division machinery as revealed by immunofluorescence and electron microscopy.Planta215185190PubMedGoogle Scholar
  29. 29.
    Kuroiwa, T, Kuroiwa, H, Sakai, A, Takahashi, H, Toda, K, Itoh, R 1998The division apparatus of plastids and mitochondria.Int Rev Cytol1811141PubMedGoogle Scholar
  30. 30.
    Liu, Z, Mukherjee, A, Lutkenhaus, J 1999Recruitment of ZipA to the division site by interaction with FtsZ.Mol Microbiol3118531861PubMedGoogle Scholar
  31. 31.
    Ma, XL, Margolin, W 1999Genetic and Functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ.J Bacteriol18175317544PubMedGoogle Scholar
  32. 32.
    Ma, X, Ehrhardt, DW, Margolin, W 1996Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein.Proc Natl Acad Sci USA931299813003PubMedGoogle Scholar
  33. 33.
    McAndrew, RS, Froehlich, JE, Vitha, S, Stokes, KD, Osteryoung, KW 2001Colocalization of plastid division proteins in the chloroplast stromal compartment establishes a new functional relationship between FtsZ1 and FtsZ2 in higher plants.Plant Physiol12716561666PubMedGoogle Scholar
  34. 34.
    Martin, W, Stoebe, B, Goremykin, V, Hapsmann, S, Hasegawa, M, Kowallik, KV 1998Gene transfer to the nucleus and the evolution of chloroplasts.Nature393162165PubMedGoogle Scholar
  35. 35.
    McFadden, GI 2001Primary and secondary endosymbiosis and the origin of plastids.J Phycol37951959Google Scholar
  36. 36.
    Miyagishima, S, Takahara, M, Kuroiwa, T 2001aNovel filaments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus.Plant Cell13707721Google Scholar
  37. 37.
    Miyagishima, S, Takahara, M, Mori, T, Kuroiwa, H, Higashiyama, T, Kuroiwa, T 2001bPlastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings.Plant Cell1322572268Google Scholar
  38. 38.
    Miyagishima, S, Nishida, K, Mori, T, Matsuzaki, M, Higashiyama, T, Kuroiwa, H, Kuroiwa, T 2003aA plant-specific dynamin- related protein forms a ring at the chloroplast division site.Plant Cell15655665Google Scholar
  39. 39.
    Miyagishima, S, Nishida, K, Kuroiwa, T 2003bAn evolutionary puzzle: Chloroplast and mitochondrial division rings.Trends Plant Sci8432438Google Scholar
  40. 40.
    Moreira, D, Le Guyader, H, Philippe, H 2000The origin of red algae and the evolution of chloroplasts.Nature4056972PubMedGoogle Scholar
  41. 41.
    Mori, T, Kuroiwa, H, Takahara, M, Miyagishima, S, Kuroiwa, T 2001Visualization of an FtsZ ring in chloroplasts of Lilium longiflorum leaves.Plant Cell Physiol42555559PubMedGoogle Scholar
  42. 42.
    Mosyak, L, Zhang, Y, Glasfeld, E, Haney, S, Stahl, M, Seehra, J, Somers, WS 2000The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography.EMBO J1931793191PubMedGoogle Scholar
  43. 43.
    Nishida, K, Takahara, M, Miyagishima, S, Kuroiwa, H, Matsuzaki, M, Kuroiwa, T 2003Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga.Proc Natl Acad Sci USA10021462151PubMedGoogle Scholar
  44. 44.
    Ohta, N, Sato, N, Kuroiwa, T 1998Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence.Nucleic Acids Res2651905198PubMedGoogle Scholar
  45. 45.
    Ohta, N, Matsuzaki, M, Misumi, O, Miyagishima, S, Nozaki, H, Tanaka, K, Shin-i, T, Kohara, Y, Kuroiwa, T 2003Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae.DNA Res106777PubMedGoogle Scholar
  46. 46.
    Osteryoung, KW 2002Organelle fission in eukaryotes.Curr Opin Microbiol4639646Google Scholar
  47. 47.
    Osteryoung, KW, McAndrew, RS 2001The plastid division machine.Annu Rev Plant Physiol Plant Mol Biol52315333PubMedGoogle Scholar
  48. 48.
    Osteryoung, KW, Vierling, E 1995Conserved cell and organelle division.Nature376473474PubMedGoogle Scholar
  49. 49.
    Osteryoung, KW, Stokes, KD, Rutherford, SM, Percival, AL, Lee, WY 1998Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ.Plant Cell1019912004PubMedGoogle Scholar
  50. 50.
    Philippe, H 2000Long branch attraction and protist phylogeny.Protist151307316PubMedGoogle Scholar
  51. 51.
    Saitou, N, Nei, M 1987The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol Biol Evol4406425PubMedGoogle Scholar
  52. 52.
    Shimodaira, H, Hasegawa, M 1999Multiple comparisons of log-likelihoods with applications to phylogenetic inference.Mol Biol Evol1611141116Google Scholar
  53. 53.
    Shimodaira, H, Hasegawa, M 2001CONSEL: For assessing the confidence of phylogenetic tree selection.Bioinformatics1712461247PubMedGoogle Scholar
  54. 54.
    Strepp, R, Scholz, S, Kruse, S, Speth, V, Reski, R 1998Plant molecular gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin.Proc Natl Acad Sci USA9543684373PubMedGoogle Scholar
  55. 55.
    Strimmer, K, Von Haeseler, A 1996Quartet puzzling: A quartet maximum-likelihood method for reconstructing tree topologies.Mol Biol Evol13964969Google Scholar
  56. 56.
    Swofford, DL 2002PAUP* 4.0: Phylogenetic analysis using parsimony, version 4.0b 10.Computer program distributed by Sinauer AssociatesSunderland, MAGoogle Scholar
  57. 57.
    Takahara, M, Takahashi, H, Matsunaga, S, Miyagishima, S, Takano, H, Sakai, A, Kawano, S, Kuroiwa, T 2000A putative mitochondrial ftsZ gene is present in the unicellular primitive red alga Cyanidioschyzon merolae.Mol Gen Genet264452460PubMedGoogle Scholar
  58. 58.
    Takahara, M, Kuroiwa, H, Miyagishima, S, Mori, T, Kuroiwa, T 2001Localization of the mitochondrial FtsZ protein in a dividing mitochondrion.Cytologia66421425Google Scholar
  59. 59.
    Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res2548764882CrossRefPubMedGoogle Scholar
  60. 60.
    Toda, K, Takahashi, H, Itoh, R, Kuroiwa, T 1995DNA contents in two Cyanidiophyceae: Cyanidioschyzon merolae and Cyanidium caldarium Forma A.Cytologia60183188Google Scholar
  61. 61.
    Vitha, S, McAndrew, RS, Osteryoung, KW 2001FtsZ ring formation at the chloroplast division site in plants.J Cell Biol153111120PubMedGoogle Scholar
  62. 62.
    Vitha, S, Froehlich, JE, Koksharova, O, Pyke, KA, van Erp, H, Osteryoung, KW 2003ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2.Plant Cell1519181933PubMedGoogle Scholar
  63. 63.
    Wang, D, Kong, D, Wang, Y, Hu, Y, He, Y, Sun, J 2003Isolation of two plastid division ftsZ genes from Chlamydomonas reinhardtii and its evolutionary implication for the role of FtsZ in plastid division.J Exp Bot5411151116PubMedGoogle Scholar
  64. 64.
    Wang, X, Huang, J, Mukherjee, A, Cao, C, Lutkenhaus, J 1997Analysis of the interaction of FtsZ with itself, GTP, and FtsA.J Bacteriol17955515559PubMedGoogle Scholar
  65. 65.
    Yan, K, Pearce, KH, Payne, DJ 2000A conserved residue at the extreme C-terminus of FtsZ is critical for the FtsA-FtsZ interaction in Staphylococcus aureus.Biochem Biophys Res Commun270387392PubMedGoogle Scholar
  66. 66.
    Yoon, HS, Hackett, JD, Bhattacharya, D 2002aA single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis.Proc Natl Acad Sci USA991172411729Google Scholar
  67. 67.
    Yoon, HS, Hackett, JD, Pinto, G, Bhattacharya, D 2002bThe single, ancient origin of chromist plastids.Proc Natl Acad Sci USA991550715512Google Scholar
  68. 68.
    Yu, XC, Margolin, W 1997Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro.EMBO J1654555463PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2004

Authors and Affiliations

  • Shin-ya Miyagishima
    • 1
  • Hisayoshi Nozaki
    • 2
  • Keishin Nishida
    • 1
  • Keiji Nishida
    • 2
  • Motomichi Matsuzaki
    • 3
  • Tsuneyoshi Kuroiwa
    • 1
  1. 1.Department of Life SciencesCollege of Science, Rikkyo (St. Paul’s) University, 3-34-1 Nishiikebukuro, Toshima-ku, Tokyo 171-8501Japan
  2. 2.Department of Biological SciencesGraduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033Japan
  3. 3.Department of Biomedical ChemistryGraduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033Japan

Personalised recommendations