Journal of Molecular Evolution

, Volume 58, Issue 2, pp 145–153 | Cite as

Adaptive Evolution of Scorpion Sodium Channel Toxins

Article

Abstract

Gene duplication followed by positive Darwinian selection is an important evolutionary event at the molecular level, by which a gene can gain new functions. Such an event might have occurred in the evolution of scorpion sodium channel toxin genes (α- and β-groups). To test this hypothesis, a robust statistical method from Yang and co-workers based on the estimation of the nonsynonymous-to-synonymous rate ratio (ω = dN/dS) was performed. The results provide clear statistical evidence for adaptive molecular evolution of scorpion α- and β-toxin genes. A good match between the positively selected sites (evolutionary epitopes) and the putative bioactive surface (functional epitopes) indicates that these sites are most likely involved in functional recognition of sodium channels. Our results also shed light on the importance of the B-loop in the functional diversification of scorpion α- and β-toxins.

Keywords

Gene duplication Positive Darwinian selection Likelihood ratio test Scorpion toxin Sodium channel Evolutionary epitopes 

References

  1. 1.
    Anisimova, M, Bielawski, JP, Yang, Z 2001Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution.Mol Biol Evol1815851592PubMedGoogle Scholar
  2. 2.
    Anisimova, M, Bielawski, JP, Yang, Z 2001Accuracy and power of Bayesian prediction of amino acid sites under positive selection.Mol Biol Evol19950958Google Scholar
  3. 3.
    Becerril, B, Vazquez, A, Garcia, G, Corona, M, Bolivar, F, Possani, LD 1993Cloning and characterization of cDNAs that code for Na+-channel-blocking toxins of the scorpion Centruroides noxius Hoffmann.Gene128165171CrossRefPubMedGoogle Scholar
  4. 4.
    Bielawski, JP, Yang, Z 2003Maximum likelihood methods for detecting adaptive evolution after gene duplication.J Struct Funct Genomics3201212CrossRefPubMedGoogle Scholar
  5. 5.
    Bouhaouala-Zahar, B, Ducancel, F, Zenouaki, H, Khalifa, RB, Borchani, L, Pelhate, M, Boulain, JC, Ayeb, ME, Ménez, A, Karoui, H 1996A recombinant insect-specific α-toxin of Buthus occitanus tunetanus scorpion confers protection against homologous mammal toxins.Eur J Biochem238653660PubMedGoogle Scholar
  6. 6.
    Catterall, WA 1995Structure and function of voltage-gated ion channels.Annu Rev Biochem64493531PubMedGoogle Scholar
  7. 7.
    Catterall, WA 2000From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels.Neuron261325PubMedGoogle Scholar
  8. 8.
    Céard, B, Martin-Eauclaire, MF, Bougis, PE 2001Evidence for a position-specific deletion as an evolutionary link between long- and short-chain scorpion toxins.FEBS Lett494246248CrossRefPubMedGoogle Scholar
  9. 9.
    Cestèle, S, Catterall, WA 2000Molecular mechanisms of neurotoxin action on voltage-gated sodium channels.Biochimie82883892CrossRefPubMedGoogle Scholar
  10. 10.
    Conticello, SO, Gilad, Y, Avidan, N, Ben-Asher, E, Levy, Z, Fainzilber, M 2001Mechanisms for evolving hypervariability: The case of conopeptides.Mol Biol Evol18120131PubMedGoogle Scholar
  11. 11.
    Cook, WJ, Zell, A, Watt, D, Ealick, SE 2002Structure of variant 2 scorpion toxin from Centruroides sculpturatus Ewing.Protein Sci11479486CrossRefPubMedGoogle Scholar
  12. 12.
    Corona, M, Valdez-Cruz, NA, Merino, E, Zurita, M, Possani, LD 2001Genes and peptides from the scorpion Centruroides sculpturatus Ewing, that recognize Na+ channels.Toxicon3918931898CrossRefPubMedGoogle Scholar
  13. 13.
    Denac, H, Mevissen, M, Scholtysik, G 2000Structure, function and pharmacology of voltage-gated sodium channels.Naunyn Schmiedebergs Arch Pharmacol362453479CrossRefPubMedGoogle Scholar
  14. 14.
    Fay, JC, Wu, CI 2001The neutral theory in the genomic era.Curr Opin Genet Dev11642646CrossRefPubMedGoogle Scholar
  15. 15.
    Froy, O, Sagiv, T, Poreh, M, Urbach, D, Zilberberg, N, Gurevitz, M 1999Dynamic diversification from a putative common ancestor of scorpion toxins affecting sodium, potassium and chloride channels.J Mol Evol48187196PubMedGoogle Scholar
  16. 16.
    Gordon, D, Gurevitz, M 2003The selectivity of scorpion α-toxins for sodium channel subtypes is determined by subtle variations at the interaction surface.Toxicon41125128CrossRefPubMedGoogle Scholar
  17. 17.
    Gordon, D, Ilan, N, Zilberberg, N, Gilles, N, Urbach, D, Cohen, L, Karbat, I, Froy, O, Gaathon, A, Kallen, RG, Benveniste, M, Gurevitz, M 2003An ‘Old World’ scorpion β-toxin that recognizes both insect and mammalian sodium channels.Eur J Biochem27026632670CrossRefPubMedGoogle Scholar
  18. 18.
    Gurevitz, M, Froy, O, Zilberberg, N, Turkov, M, Strugatsky, D, Gershburg, E, Lee, D, Adams, ME, Tugarinov, V, Anglister, J, Shaanan, B, Loret, E, Stankiewicz, M, Pelhate, M, Gordon, D, Chejanovsky, N 1998Sodium channel modifiers from scorpion venom: Structure-activity relationship, mode of action and application.Toxicon3616711682PubMedGoogle Scholar
  19. 19.
    Gurevitz, M, Gordon, D, Ben-Natan, S, Turkov, M, Froy, O 2001Diversification of neurotoxins by C-tail ‘wiggling’: A scorpion recipe for survival.FASEB J1512011205CrossRefPubMedGoogle Scholar
  20. 20.
    He, XL, Li, HM, Zeng, ZH, Liu, XQ, Wang, M, Wang, DC 1999Crystal structures of two α-like scorpion toxins: Non-proline cis peptide bonds and implications for new binding site selectivity on the sodium channel.J Mol Biol292125135CrossRefPubMedGoogle Scholar
  21. 21.
    Ji, YH, Li, YJ, Zhang, JW, Song, BL, Yamaki, T, Mochizuki, T, Hoshino, M, Yanaihara, N 1999Covalent structures of BmK AS and BmK AS-1, two novel bioactive polypeptides purified from the Chinese scorpion Buthus martensii Karsch.Toxicon37519536CrossRefPubMedGoogle Scholar
  22. 22.
    Kimura, M 1983The neutral theory of molecular evolution.Cambridge University PressCambridge, UKGoogle Scholar
  23. 23.
    Kini, RM, Chan, YM 1999Accelerated evolution and molecular surface of venom phospholipase A2 enzymes.J Mol Evol48125132PubMedGoogle Scholar
  24. 24.
    Kordis, D, Gubensek, F 2000Adaptive evolution of animal toxin multigene families.Gene2614352CrossRefPubMedGoogle Scholar
  25. 25.
    Li, HM, Wang, DC, Zeng, ZH, Jin, L, Hu, RQ 1996Crystal structure of an acidic neurotoxin from scorpion Buthus martensi Karsch at 1.85Å resolution.J Mol Biol261415431CrossRefPubMedGoogle Scholar
  26. 26.
    Li, W 1997Molecular evolution.Sinauer AssociatesSunderland, MAGoogle Scholar
  27. 27.
    Long, M 2001Evolution of novel genes.Curr Opin Genet Dev11673680CrossRefPubMedGoogle Scholar
  28. 28.
    Nielsen, R, Yang, Z 1998Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene.Genetics148929936PubMedGoogle Scholar
  29. 29.
    Possani, LD, Becerril, B, Delepierre, M, Tytgat, J 1999Scorpion toxins specific for Na+-channels.Eur J Biochem264287300PubMedGoogle Scholar
  30. 30.
    Srinivasan, KN, Nirthanan, S, Sasaki, T, Sato, K, Cheng, B, Gwee, MCE, Kini, RM, Gopalakrishnakone, P 2001Functional site of bukatoxin, an α-type sodium channel neurotoxin from the Chinese scorpion (Buthus martensii Karsch) venom: Probable role of the 52PDKVP56 loop.FEBS Lett494145149CrossRefPubMedGoogle Scholar
  31. 31.
    Swanson, WJ, Vacquier, VD 2002Reproductive protein evolution.Annu Rev Ecol Syst33161179CrossRefGoogle Scholar
  32. 32.
    Swanson, WJ, Yang, Z, Wolfner, MF, Aquadro, CF 2000Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals.Proc Natl Acad Sci USA9825092514CrossRefGoogle Scholar
  33. 33.
    Vázquez, A, Becerril, B, Martin, BM, Zamudio, F, Bolivar, F, Possani, LD 1993Primary structure determination and cloning of the cDNA encoding toxin 4 of the scorpion Centruroides noxius Hoffmann.FEBS Lett3204346CrossRefPubMedGoogle Scholar
  34. 34.
    Vázquez, A, Tapia, JV, Eliason, WK, Martin, BM, Lebreton, F, Delepierre, M, Possani, LD, Becerril, B 1995Cloning and characterization of the cDNAs encoding Na+ channel-specific toxins 1 and 2 of the scorpion Centruroides noxius Hoffmann.Toxicon3311611170CrossRefPubMedGoogle Scholar
  35. 35.
    Wolfe, KH, Li, W 2003Molecular evolution meets the genomics revolution.Nature genetics Suppl33255265CrossRefGoogle Scholar
  36. 36.
    Yang, J, Huang, J, Gu, H, Zhong, Y, Yang, Z 2002Duplication and adaptive evolution of the chalcone synthase genes of dendranthema (Asteraceae)Mol Biol Evol1917521759PubMedGoogle Scholar
  37. 37.
    Yang, Z 2002Inference of selection from multiple species alignments.Curr Opin Genet Dev12688694CrossRefPubMedGoogle Scholar
  38. 38.
    Yang, Z, Bielawski, JP 2000Statistical methods for detecting molecular adaptation.Tree15496503CrossRefPubMedGoogle Scholar
  39. 39.
    Yang, Z, Nielsen, R, Goldman, N, Pedersen, AMK 2000Codon-substitution models for heterogeneous selection pressure at amino acid sites.Genetics155431449Google Scholar
  40. 40.
    Zeng, XC, Li, WX, Zhu, SY, Peng, F, Zhu, ZH, Liu, H, Mao, X 2001Molecular cloning and sequence analysis of cDNAs encoding a β-toxin-like peptide and two MkTx I homologues from scorpion Buthus martensii Karsh.Toxicon39225232CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang, J, Rosenberg, HF, Nei, M 1998Positive Darwinian selection after gene duplication in primate ribonuclease genes.Proc Natl Acad Sci USA9537083713CrossRefPubMedGoogle Scholar
  42. 42.
    Zhu, SY, Li, WX, Zeng, XC, Liu, H, Jiang, DH, Mao, X 2000Nine novel precursors of Buthus martensii scorpion α-toxin homologues.Toxicon3816531661CrossRefPubMedGoogle Scholar
  43. 43.
    Zilberberg, N, Gordon, D, Pelhate, M, Adams, ME, Norris, TM, Zlotkin, E, Gurevitz, M 1996Functional expression and genetic alteration of an alpha scorpion neurotoxin.Biochemistry351021510222CrossRefPubMedGoogle Scholar
  44. 44.
    Zilberberg, N, Froy, O, Loret, E, Cestèle, S, Arad, D, Gordon, D, Gurevitz, M 1997Identification of structural elements of a scorpion α-neurotoxin important for receptor site recognition.J Biol Chem2721481014816CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2004

Authors and Affiliations

  1. 1.Laboratory of ToxicologyUniversity of Leuven, E. Van Evenstraat 4, 3000 LeuvenBelgium

Personalised recommendations