Journal of Molecular Evolution

, Volume 58, Issue 2, pp 131–144 | Cite as

Molecular Evolutionary Characterization of the Mussel Mytilus Histone Multigene Family: First Record of a Tandemly Repeated Unit of Five Histone Genes Containing an H1 Subtype with “Orphon” Features

  • José M. Eirín-López
  • M. Fernanda Ruiz
  • Ana M. González-Tizón
  • Andrés Martínez
  • Lucas Sánchez
  • Josefina MéndezEmail author


The present work represents the first characterization of a clustered histone repetitive unit containing an H1 gene in a bivalve mollusk. To complete the knowledge on the evolutionary history of the histone multigene family in invertebrates, we undertake its characterization in five mussel Mytilus species, as an extension of our previous work on the H1 gene family. We report the quintet H4–H2B–H2A–H3–H1 as the major organization unit in the genome of Mytilus galloprovincialis with two 5S rRNA genes with interspersed nontranscribed spacer segments linked to the unit, which is not justified by their cotranscription with histone genes. Surprisingly, 3′ UTR regions of histone genes show two different mRNA termination signals, a stem-loop and a polyadenylation signal, both related to the evolution of histone gene expression patterns throughout the cell cycle. The clustered H1 histones characterized share essential features with “orphon” H1 genes, suggesting a common evolutionary origin for both histone subtypes which is supported by the reconstructed phylogeny for H1 genes. The characterization of histone genes in four additional Mytilus species revealed the presence of strong purifying selection acting among the members of the family. The chromosomal location of most of the core histone genes studied was identified by FISH close to telomeric regions in M. galloprovincialis. Further analysis on nucleotide variation would be necessary to assess if H1 proteins evolve according to the birth-and-death model of evolution and if the effect of the strong purifying selection maintaining protein homogeneity could account for the homologies detected between clustered and “orphon” variants.


Mussel Mytilus Histone gene quintets “Orphon” genes Phylogeny Copy number FISH 



This work was supported by a PGIDT Grant (10PX110304PR) awarded to J. Méndez and by a predoctoral FPU fellowship from the Spanish Government given to J.M. Eirín- López. Thanks are due to ANFACO-CECOPESCA, Dr. H. Hummel, and Dr. J. Ausió for kindly supplying mussel specimens. We also thank two anonymous reviewers for helpful discussions and comments.


  1. 1.
    Akhmanova, A, Miedema, K, Kremer, H, Henning, W 1997Two types of polyadenilated mRNAs are synthesized from Drosophila replication-dependent histones.Eur J Biochem244294300PubMedGoogle Scholar
  2. 2.
    Albig, W, Kioschis, P, Poutska, A, Meergans, K, Doenecke, D 1997Human histone gene organization: Nonregular arrangement within a large cluster.Genomics40314322CrossRefPubMedGoogle Scholar
  3. 3.
    Albig, W, Warthorst, U, Drabent, B, Prats, E, Cornudella, L, Doenecke, D 2003 Mytilus edulis core histone genes are organized in two clusters devoid of linker histone genes.J Mol Evol56597606CrossRefPubMedGoogle Scholar
  4. 4.
    Arents, G, Moudrianakis, EN 1995The histone fold: A ubiquitous architectural motif utilized in DNA compaction and protein dimerization.Proc Natl Acad Sci USA921117011174PubMedGoogle Scholar
  5. 5.
    Barzotti, R, Pelliccia, F, Bucciarelli, E, Rocchi, A 2000Organization, nucleotide sequence, and chromosomal mapping of a tandemly repeated unit containing the four core histones genes and a 5S rRNA gene in an isopod crustacean species.Genome43341345CrossRefPubMedGoogle Scholar
  6. 6.
    Birnstiel, M, Busslinger, M, Strub, K 1985Transcription termination and 3′ processing: The end is in site!Cell41349359PubMedGoogle Scholar
  7. 7.
    Brown, D, Cook, A, Wagner, M, Wells, D 1992Closely linked H2B genes in the marine copepod Tigriopus californicus indicate a recent gene duplication or gene conversion event.DNA Sequence2387396PubMedGoogle Scholar
  8. 8.
    Charlesworth, B, Morgan, MT, Charlesworth, D 1993The effect of deleterious mutations on neutral molecular evolution.Genetics13412891303PubMedGoogle Scholar
  9. 9.
    Childs, G, Maxson, R, Kedes, L 1981Orphons: Dispersed genetic elements derived from tandem repetitive genes of eucaryotes.Cell23651663PubMedGoogle Scholar
  10. 10.
    Connor, W, States, JC, Mezquita, J, Dixon, GH 1984Organization and nucleotide sequence of rainbow trout histone H2A and H3 genes.J Mol Evol20236250PubMedGoogle Scholar
  11. 11.
    Cool, D, Banfield, D, Honda, BM, Smith, MJ 1988Histone genes in three sea star species: Cluster arrangement, transcriptional polarity and analysis of the flanking regions of H3 and H4 genes.J Mol Evol273644PubMedGoogle Scholar
  12. 12.
    D’Andrea, R, Coles, LS, Lesnikowski, C, Tabe, L, Wells, JRE 1985Chromosomal organization of chicken histone genes: Preferred association and inverted duplications.Mol Cell Biol531083115PubMedGoogle Scholar
  13. 13.
    del Gaudio, R, Potenza, N, Stefanoni, P, Chiusano, ML, Geraci, G 1998Organization and nucleotide sequence of the cluster of five histone genes in the polychaete worm Chaetopterus variopedatus: First record of a H1 histone gene in the phylum Annelida.J Mol Evol466473PubMedGoogle Scholar
  14. 14.
    Doenecke, D, Albig, W, Bode, C, Drabent, B, Franke, K, Gavenis, K, Witt, O 1997Histones: Genetic diversity and tissue-specific gene expression.Histochem Cell Biol107110CrossRefPubMedGoogle Scholar
  15. 15.
    Domier, LL, Rivard, JJ, Sabatini, LM, Blumenfeld, M 1986 Drosophila virilis histone gene clusters lacking H1 coding segments.J Mol Evol23149158PubMedGoogle Scholar
  16. 16.
    Drabent, B, Kim, JS, Albig, W, Prats, E, Cornudella, L, Doenecke, D 1999 Mytilus edulis histone gene clusters containing only H1 genes.J Mol Evol49645655PubMedGoogle Scholar
  17. 17.
    Drabent, B, Louroutziatis, A, Prats, E, Cornudella, L, Doenecke, D 1995Structure of histone H2B and H4 genes of the sea cucumber Holothuria tubulosa. DNA Sequence64145PubMedGoogle Scholar
  18. 18.
    Eirín-López, JM, González-Tizón, AM, Martínez, A, Méndez, J 2002Molecular and evolutionary analysis of mussel histone genes (Mytilus spp.): Possible evidence of an “orphon” origin for H1 histone genes.J Mol Evol55272283CrossRefPubMedGoogle Scholar
  19. 19.
    Fitch, DHA, Strausbaugh, LD, Barrett, V 1990On the origins of tandemly repeated genes: Does histone gene copy number in Drosophila reflect chromosomal location?Chromosoma99118124PubMedGoogle Scholar
  20. 20.
    González-Tizón, AM, Martínez-Lage, A, Rego, I, Ausió, J, Méndez, J 2000DNA content, karyotypes, and chromosomal location of 18S-5.8S-28S ribosomal loci in some species of bivalve molluscs from the pacific Canadian coast.Genome4310651072CrossRefPubMedGoogle Scholar
  21. 21.
    Hankeln, T, Schmidt, ER 1991The organization, localization and nucleotide sequence of the histone genes of the midge Chironomus thummi. Chromosoma1012531PubMedGoogle Scholar
  22. 22.
    Hentschel, CC, Birnstiel, ML 1981The organization and expression of histone gene families.Cell25301313PubMedGoogle Scholar
  23. 23.
    Isenberg, I 1979Histones.Annu Rev Genet48159191CrossRefGoogle Scholar
  24. 24.
    Kaplan, NL, Hudson, RR, Langley, CH 1989The “hitchhiking” effect revisited.Genetics123887899PubMedGoogle Scholar
  25. 25.
    Khochbin, S, Wolffe, AP 1994Developmentally regulated expression of linker-histone variants in vertebrates.Eur J Biochem225501510PubMedGoogle Scholar
  26. 26.
    Kumar, S, Tamura, K, Jakobsen, IB, Nei, M 2001MEGA2: Molecular Evolutionary Genetic Analysis software.Bioinformatics1712441245PubMedGoogle Scholar
  27. 27.
    Lieber, T, Angerer, LM, Angerer, RC, Childs, G 1988A histone H1 protein in sea urchins is encoded by poly(A)+ mRNA.Proc Natl Acad Sci USA8541234127PubMedGoogle Scholar
  28. 28.
    Martínez-Lage, A, Gónzalez-Tizón, AM, Méndez, J 1994Characterization of different chromatin types in Mytilus galloprovincialis L. after C-banding, fluorochrome and restriction endonuclease treatments.Heredity72242249Google Scholar
  29. 29.
    Maxson, R, Cohn, R, Kedes, L 1983Expression and organization of histone genes.Annu Rev Genet17239277CrossRefPubMedGoogle Scholar
  30. 30.
    Maxson, R, Mohun, T, Gormezano, G, Childs, G, Kedes, L 1983Distinct organizations and patterns of expression of early and late histone gene sets in the sea urchin.Nature301120125PubMedGoogle Scholar
  31. 31.
    Mezquita, J, Connor, W, Winkfein, RJ, Dixon, GH 1985An H1 histone gene from rainbow trout (Salmo gairdnerii).J Mol Evol21209219Google Scholar
  32. 32.
    Miller, DJ, Harrison, PL, Mahony, TJ,  et al. 1993Nucleotide sequence of the histone gene cluster in the coral Acropora formosa (Cnidaria, Scleractinia). Features of histone gene structure and organization are common to diploblastic and tripoblastic metazoans.J Mol Evol37245253PubMedGoogle Scholar
  33. 33.
    Nei, M, Gu, X, Sitnikova, T 1997Evolution by the birth-and-death process in multigene families of the vertebrate immune system.Proc Natl Acad Sci USA9477997806PubMedGoogle Scholar
  34. 34.
    Nei, M, Hughes, AL 1992Balanced polymorphism and evolution by the birth-and-death process in the MHC loci.Tsuji, KAizawa, MSasazuki, T eds. 11th Histocompatibility Workshop and Conference.Oxford University PressOxford2738Google Scholar
  35. 35.
    Nei, M, Rogozin, IB, Piontkivska, H 2000Purifying selection and birth-and-death evolution in the ubiquitin gene family.Proc Natl Acad Sci USA971086610871CrossRefPubMedGoogle Scholar
  36. 36.
    Ohsumi, K, Katagiri, C 1991Occurrence of H1-subtypes specific to pronuclei and cleavage stage cell nuclei of anuran amphibians.Dev Biol147110120PubMedGoogle Scholar
  37. 37.
    Peretti, M, Khochbin, S 1997The evolution of the differentiation-specific histone H1 gene basal promoter.J Mol Evol44128134PubMedGoogle Scholar
  38. 38.
    Piontkivska, H, Rooney, AP, Nei, M 2002Purifying selection and birth-and-death evolution in the histone H4 gene family.Mol Biol Evol19689697PubMedGoogle Scholar
  39. 39.
    Ponte, I, Vidal-Taboada, JM, Suau, P 1998Evolution of the vertebrate H1 histone class: Evidence for the functional differentiation of the subtypes.Mol Biol Evol15702708PubMedGoogle Scholar
  40. 40.
    Ramakrishnan, V, Finch, JT, Graziano, V, Lee, PL, Sweet, RM 1993Crystal structure of globular domain of histone H5 and its implications for nucleosome binding.Nature362219223CrossRefPubMedGoogle Scholar
  41. 41.
    Rice, EL, Bird, CJ 1990Relationships among geographically distant population of Gracilaria verrucosa (Gracilariales, Rhodophyta) and related species.Phycologia29501510Google Scholar
  42. 42.
    Rodríguez-Juíz, AM, Torrado, M, Méndez, J 1996Genome-size variation in bivalve molluscs determined by flow cytometry.Mar Biol126489497Google Scholar
  43. 43.
    Rooney, AP, Piontkivska, H, Nei, M 2002Molecular evolution of the nontandemly repeated genes of the histone 3 multigene family.Mol Biol Evol196875PubMedGoogle Scholar
  44. 44.
    Rozas, J, Rozas, R 1999DnaSP version 3: An integrated program for molecular population genetics and molecular evolution analysis.Bioinformatics15174175CrossRefPubMedGoogle Scholar
  45. 45.
    Saitou, N, Nei, M 1987The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol Biol Evol4406425PubMedGoogle Scholar
  46. 46.
    Schulze, E, Schulze, B 1995The vertebrate linker histones H10, H5, and H1M are descendants of invertebrate “orphon” histone H1 genes.J Mol Evol41833840PubMedGoogle Scholar
  47. 47.
    Sellos, D, Krawetz, SA, Dixon, GH 1990Organization and complete nucleotide sequence of the core-histone-gene cluster of the annelid Platynereis dumerilii. Eur J Biochem1902129PubMedGoogle Scholar
  48. 48.
    Simpson, RT 1978Structure of chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones.Biochemistry1755245531PubMedGoogle Scholar
  49. 49.
    Stephenson, E, Erba, H, Gall, J 1981Characterization of a cloned histone gene cluster of the newt Notophtalmus viridescens. Nucleic Acids Res922812295PubMedGoogle Scholar
  50. 50.
    Sturm, RA, Dalton, S, Wells, JRE 1988Conservation of histone H2A/2B intergene regions: A role for the H2B specific element in divergent transcription.Nucleic Acids Res1685718586PubMedGoogle Scholar
  51. 51.
    Sures, I, Levy, S, Kedes, L 1980Leader sequences of Strongylocentrotus purpuratus histone mRNAs start at a unique heptanucleotide common to all five histone genes.Proc Natl Acad Sci USA7712651269PubMedGoogle Scholar
  52. 52.
    Sures, I, Lowry, J, Kedes, LH 1978The DNA sequences of sea urchin (S. purpuratus) H2A, H2B and H3 histone coding and spacer regions.Cell1510331044PubMedGoogle Scholar
  53. 53.
    Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res2548764882PubMedGoogle Scholar
  54. 54.
    Wang, ZF, Sirotkin, AM, Buchold, GM, Skoultchi, AI, Marzluff, WF 1997The mouse histone H1 genes: Gene organization and differential regulation.J Mol Biol271124138CrossRefPubMedGoogle Scholar
  55. 55.
    Winnepenninckx, B, Backeljau, T, De Watcher, R 1993Extraction of high molecular weigh DNA from molluscs.Trends Genet9407CrossRefPubMedGoogle Scholar
  56. 56.
    Wolffe, AP, Khochbin, S, Dimitrov, S 1997What do linker histones do in chromatin?BioEssays19249255PubMedGoogle Scholar
  57. 57.
    Wright, F 1990The “effective number of codons” used in a gene.Gene872329Google Scholar
  58. 58.
    Zhang, J, Rosenberg, HF, Nei, M 1998Positive Darwinian selection after gene duplication in primate ribonuclease genes.Proc Natl Acad Sci USA9537083713CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2004

Authors and Affiliations

  • José M. Eirín-López
    • 1
  • M. Fernanda Ruiz
    • 2
  • Ana M. González-Tizón
    • 1
  • Andrés Martínez
    • 1
  • Lucas Sánchez
    • 2
  • Josefina Méndez
    • 1
    Email author
  1. 1.Departamento de Biología Celular y MolecularUniversidade da Coruña, Campus de A Zapateira s/n, E-15071—A CoruñaSpain
  2. 2.Departamento de Biología Celular y del DesarrolloCentro de Investigaciones Biológicas—CSIC, Velázquez 144, E-28006—MadridSpain

Personalised recommendations