Journal of Molecular Evolution

, Volume 57, Issue 6, pp 731–736 | Cite as

Selection for Highly Biased Amino Acid Frequency in the TolA Cell Envelope Protein of Proteobacteria

Article

Abstract

The bacterial cell envelope protein TolA functions to maintain the integrity of the cell membrane. This protein contains high levels of alanine and lysine that are used in the formation of alpha helices, which are required for normal protein function. The neutral model of molecular evolution predicts that amino acid composition and nucleotide composition are driven by the underlying GC content, as a result of mutation bias. However, this study shows that selection has acted to maintain high levels of alanine and lysine in the TolA protein of Proteobacteria, which in turn has biased nucleotide composition in the corresponding tolA gene.

Keywords

TolA Cell membrane Selection Amino acid composition 

Notes

Acknowledgements

Helpful comments were provided by C.P. Kurtzman, D.P. Labeda, T.J. Ward, J. Zhang, and two anonymous reviewers.

References

  1. 1.
    Akashi, H, Gojobori, T 2002Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis.Proc Natl Acad Sci USA9936953700CrossRefPubMedGoogle Scholar
  2. 2.
    Altschul, SF, Madden, TL, Schaffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ 1997Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.Nucleic Acids Res2533893402PubMedGoogle Scholar
  3. 3.
    Bernardi, G 2000The compositional evolution of vertebrate genomes.Gene2593143CrossRefPubMedGoogle Scholar
  4. 4.
    Bernardi, G, Bernardi, G 1986Compositional constraints and genome evolution.J Mol Evol24111PubMedGoogle Scholar
  5. 5.
    Chao, L, Levin, BR 1981Structured habitats and the evolution of anticompetitor toxins in bacteria.Proc Natl Acad Sci USA7863246328PubMedGoogle Scholar
  6. 6.
    Clark, MA, Moran, NA, Baumann, P 1999Sequence evolution in bacterial endosymbionts having extreme base compositions.Mol Biol Evol1615861598PubMedGoogle Scholar
  7. 7.
    Dennis, JJ, Lafontaine, ER, Sokol, PA 1996Identification and characterization of the tolQRA genes of Pseudomonas aeruginosa.J Bacteriol17870597068PubMedGoogle Scholar
  8. 8.
    Felsenstein, J 1985Phylogenies and the comparative method.Am Nat125115CrossRefGoogle Scholar
  9. 9.
    Foster, PG, Jermiin, LS, Hickey, DA 1997Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria.J Mol Evol44282288PubMedGoogle Scholar
  10. 10.
    Gu, X, Hewett-Emmett, D, Li, WH 1998Directional mutational pressure affects the amino acid composition and hydrophobicity of proteins in bacteria.Genetica102–103383391CrossRefGoogle Scholar
  11. 11.
    Harvey, PH, Pagel, MD 1991The comparative methods in evolutionary biology.Oxford University PressOxfordGoogle Scholar
  12. 12.
    Heilpern, AJ, Waldor, MK 2000CTXφ infection of Vibrio cholerae requires the tolQRA gene products.J Bacteriol18217391747CrossRefPubMedGoogle Scholar
  13. 13.
    Jukes, TH, Bhushan, V 1986Silent nucleotide substitutions and G + C content of some mitochondrial and bacterial genes.J Mol Evol243944PubMedGoogle Scholar
  14. 14.
    Jukes, TH, Cantor, CR 1969

    Evolution of protein molecules.

    Munro, HN eds. Mammalian protein metabolism.Academic PressNew York21132
    Google Scholar
  15. 15.
    Karlin, S, Blaisdell, BE, Bucher, P 1992Quantile distributions of amino acid usage in protein classes.Protein Eng5729738PubMedGoogle Scholar
  16. 16.
    Kimura, M 1968Evolutionary rate at the molecular level.Nature217624626PubMedGoogle Scholar
  17. 17.
    Kimura, M 1980A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.J Mol Evol16111120PubMedGoogle Scholar
  18. 18.
    Kimura, M 1983The neutral theory of molecular evolution.Cambridge University PressCambridgeGoogle Scholar
  19. 19.
    King, JL, Jukes, TH 1969Non-Darwinian evolution.Science164788798PubMedGoogle Scholar
  20. 20.
    Kumar, S, Tamura, K, Jakobsen, IB, Nei, M 2001MEGA2: Molecular evolutionary genetics analysis software.Bioinformatics1712441245PubMedGoogle Scholar
  21. 21.
    Lazzaroni, JC, Germon, P, Ray, MC, Vianney, A 1999The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability.FEMS Microbiol Lett177191197CrossRefPubMedGoogle Scholar
  22. 22.
    Levengood, SK, Webster, RE 1989Nucleotide sequences of the tolA and tolB genes and localization of their products, components of a multistep translocation system in Escherichia coli.J Bacteriol17166006609PubMedGoogle Scholar
  23. 23.
    Levengood, SK, Beyer Jr, WF, Webster, RE 1991TolA: A membrane protein involved in colicin uptake contains an extended helical region.Proc Natl Acad Sci USA8859395943PubMedGoogle Scholar
  24. 24.
    Li, WH 1997Molecular evolution.SinauerSunderland, MAGoogle Scholar
  25. 25.
    Llamas, MA, Ramos, JL, Rodríguez-Herva, JJ 2000Mutations in each of the tol genes of Pseudomonas putida reveal that they are critical for maintenance of outer membrane stability.J Bacteriol18247644772CrossRefPubMedGoogle Scholar
  26. 26.
    Lloubès, R, Cascales, E, Walburger, A, Bouveret, E, Lazdunski, C, Bernadac, A, Journet, L 2001The Tol-Pal proteins of the Escherichia coli envelope: An energized system required for outer membrane integrity?Res Microbiol152523529CrossRefPubMedGoogle Scholar
  27. 27.
    Marqusee, S, Baldwin, RL 1987Helix stabilization by Glu...Lys+ salt bridges in short peptides of de novo design.Proc Natl Acad Sci USA8488988902PubMedGoogle Scholar
  28. 28.
    Marqusee, S, Robbins, VH, Baldwin, RL 1989Unusually stable helix formation in short alanine-based peptides.Proc Natl Acad Sci USA8652865290PubMedGoogle Scholar
  29. 29.
    Nei, M 1987Molecular evolutionary genetics.Columbia University PressNew YorkGoogle Scholar
  30. 30.
    Nei, M, Kumar, S 2000Molecular evolution and phylogenetics.Oxford University PressOxfordGoogle Scholar
  31. 31.
    Nishizawa, M, Nishizawa, K 1998Biased usage of arginines and lysines in proteins are correlated with local-scale fluctuations of the G + C content of DNA sequences.J Mol Evol47385393PubMedGoogle Scholar
  32. 32.
    Osawa, S, Jukes, TH, Watanabe, K, Muto, A 1992Recent evidence for evolution of the genetic code.Microbiol Rev56229264PubMedGoogle Scholar
  33. 33.
    Palacios, C, Wernegreen, JJ 2002A strong effect of AT mutational bias on amino acid usage in Buchnera is mitigated at high-expression genes.Mol Biol Evol1915751584PubMedGoogle Scholar
  34. 34.
    Riley, MA, Gordon, DM 1999The ecological role of bacteriocins in bacterial competition.Trends Microbiol7129133CrossRefPubMedGoogle Scholar
  35. 35.
    Riley, MA, Wertz, JE 2002Bacteriocins: Evolution, ecology, and application.Annu Rev Microbiol56117137CrossRefPubMedGoogle Scholar
  36. 36.
    Rodríguez-Herva, JJ, Ramos-González, MI, Ramos, JL 1996The Pseudomonas putida peptidoglycan-associated outer membrane lipoprotein is involved in maintenance of the integrity of the cell envelope.J Bacteriol178169916706PubMedGoogle Scholar
  37. 37.
    Rooney, AP, Zhang, J, Nei, M 2000An unusual form of purifying selection in a sperm DNA-binding protein.Mol Biol Evol17278283PubMedGoogle Scholar
  38. 38.
    Ross, RP, Morgan, S, Hill, C 2002Preservation and fermentation: Past, present and future.Int J Food Microbiol79316CrossRefPubMedGoogle Scholar
  39. 39.
    Saitou, N, Nei, M 1987The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol Biol Evol4406425PubMedGoogle Scholar
  40. 40.
    Singer, GA, Hickey, DA 2000Nucleotide bias causes a genome-wide bias in the amino acid composition of proteins.Mol Biol Evol1715811588PubMedGoogle Scholar
  41. 41.
    Sueoka, N 1961Correlation between base composition of deoxyribonucleotic acid and amino acid composition of protein.Proc Natl Acad Sci USA4711411149Google Scholar
  42. 42.
    Sueoka, N 1962On the genetic basis of variation and heterogeneity of DNA base composition.Proc Natl Acad Sci USA48582592PubMedGoogle Scholar
  43. 43.
    Sueoka, N 1988Directional mutation pressure and neutral molecular evolution.Proc Natl Acad Sci USA8526532657PubMedGoogle Scholar
  44. 44.
    Sun, TP, Webster, RE 1987Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli.J Bacteriol16926672674PubMedGoogle Scholar
  45. 45.
    Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res2548764882PubMedGoogle Scholar
  46. 46.
    Tibor, A, Weynants, V, Denoel, P, Lichtfouse, B, De Bolle, X, Saman, E, Limet, JN, Letesson, JJ 1994Molecular cloning, nucleotide sequence, and occurrence of a 16.5-kilodalton outer membrane protein of Brucella abortus with similarity to pal lipoproteins.Infect Immun6236333639PubMedGoogle Scholar
  47. 47.
    Wang, HC, Hickey, DA 2002Evidence for strong selective constraint acting on the nucleotide composition of 16S ribosomal RNA genes.Nucleic Acids Res3025012507CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang, J, Rosenberg, HF, Nei, M 1998Positive Darwinian selection after gene duplication in primate ribonuclease genes.Proc Natl Acad Sci USA9537083713CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  1. 1.Microbial Genomics and Bioprocessing Research UnitNational Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604USA

Personalised recommendations