Journal of Molecular Evolution

, Volume 57, Issue 6, pp 721–730 | Cite as

The Universal Ancestor and the Ancestor of Bacteria Were Hyperthermophiles

  • Massimo Di GiulioEmail author


The definition of the node of the last universal common ancestor (LUCA) is justified in a topology of the unrooted universal tree. This definition allows previous analyses based on paralogous proteins to be extended to orthologous ones. In particular, the use of a thermophily index (based on the amino acids’ propensity to enter the [hyper] thermophile proteins more frequently) and its correlation with the optimal growth temperature of the various organisms allow inferences to be made on the habitat in which the LUCA lived. The reconstruction of ancestral sequences by means of the maximum likelihood method and their attribution to the set of mesophilic or hyperthermophilic sequences have led to the following conclusions: the LUCA was a hyperthermophile “organism,” as were the ancestors of the Archaea and Bacteria domains, while the ancestor of the Eukarya domain was a mesophile. These conclusions are independent of the presence of hyperthermophile bacteria in the sample of sequences used in the analysis and are therefore independent of whether or not these are the first lines of divergence in the Bacteria domain, as observed in the topology of the universal tree of ribosomal RNA. These conclusions are thus more easily understood under the hypothesis that the origin of life took place at a high temperature.


Ancestral sequences Maximum likelihood Thermophily index Hot bacteria ancestor Hot LUCA Unrooted tree LUCA Origin of life 



The cost of this article was partly covered by funds made available by the Agenzia Spaziale Italiana project “Extremophilic Archaea as model systems to study origin and evolution of early organisms: molecular mechanisms of adaptation to extreme physicochemical conditions,” Contract I/R/365/02.


  1. 1.
    Achenbach-Richter, L, Gupta, R, Stetter, KO, Woese, CR 1987Were the original eubacteria thermophiles?Syst Appl Microbiol93439PubMedGoogle Scholar
  2. 2.
    Altschul, SF, Madden, TL, Schaffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ 1997Gapped BLAST ans PSI-BLAST: A new generation of protein database search programs.Nucleic Acids Res2533893402PubMedGoogle Scholar
  3. 3.
    Bocchetta, M, Gribaldo, S, Sanagelantoni, A, Cammarano, P 2000Phylogenetic depth of the bacterial genera Aquifex and Thermotoga inferrred from analysis of ribosomal protein, elongation factor, and RNA polymerase subunit sequences.J Mol Evol50366380PubMedGoogle Scholar
  4. 4.
    Brochier, C, Philippe, H 2002A non-hyperthermophilic ancestor for Bacteria.Nature417244CrossRefPubMedGoogle Scholar
  5. 5.
    Brown, JR, Douady, CJ, Italia, MJ, Marshall, WE, Stanhope, JM 2001Universal trees based on large combined protein sequence data sets.Nat Genet28281285CrossRefPubMedGoogle Scholar
  6. 6.
    Daubin, V, Gouy, M, Perrière, G 2001Bacterial phylogeny using supertree approach.Genome Inform Ser Worshop Genome Inform12155164Google Scholar
  7. 7.
    Di Giulio, M 2000aThe universal ancestor lived in a thermophilic or hyperthermophilic environment.J Theor Biol203203213Google Scholar
  8. 8.
    Di Giulio, M 2000bThe late stage of genetic code structuring took place at a high temperature.Gene261189195Google Scholar
  9. 9.
    Di Giulio, M 2001The universal ancestor was a thermophile or a hyperthermophile.Gene2811117CrossRefPubMedGoogle Scholar
  10. 10.
    Di Giulio, M 2003aThe universal ancestor was a thermophile or a hyperthermophile: tests and further evidence.J Theor Biol221425436Google Scholar
  11. 11.
    Di Giulio, M 2003bThe ancestor of the Bacteria domain was a hyperthermophile.J Theor Biol224277283Google Scholar
  12. 12.
    Forterre, P 1995Thermoreduction, a hypothesis for the origin of prokaryotes.CR Acad Sci Paris318415422Google Scholar
  13. 13.
    Forterre, P 1998Was our ancestor actually hyperthermophile?Wiegel, JAdams, M eds. Thermophiles and the origin of life.Taylor & FrancisLondon137146Google Scholar
  14. 14.
    Forterre, P 2001Genomics and early cellular evolution. The origin of the DNA world.CR Acad Sci Paris32410671076CrossRefGoogle Scholar
  15. 15.
    Forterre, P 2002The origin of DNA genomes and DNA replication proteins.Curr Opin Microbiol5525532CrossRefPubMedGoogle Scholar
  16. 16.
    Forterre, P, Bouthier De La Tour, C, Philippe, H, Duguet, M 2000Reverse gyrase from hyperthermophiles: Probable transfer of a thermoadaptation trait from archaea to bacetria.Trends Genet16152154CrossRefPubMedGoogle Scholar
  17. 17.
    Galtier, N, Lobry, JR 1997Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes.J Mol Evol44632636PubMedGoogle Scholar
  18. 18.
    Galtier, N, Tourasse, N, Gouy, M 1999A nonhyperthermophilic common ancestor to extant life forms.Science283220221CrossRefPubMedGoogle Scholar
  19. 19.
    Glansdorff, N 2000About the last common ancestor, the universal life-tree and lateral gene transfer: a reappraisal.Mol Microbiol38177185CrossRefPubMedGoogle Scholar
  20. 20.
    Jacobs, MB, Gerstein, MJ 1960Handbook of microbiology.van NostrandLondonGoogle Scholar
  21. 21.
    Holm, NG 1992Marine hydrothermal systems and the origin of life.Origins Life Evol Biosph221241Google Scholar
  22. 22.
    Lopez-Garcia, P, Moreira, D 1998Metabolic symbiosis at the origin of eukaryotes.Trends Biochem Sci248893CrossRefGoogle Scholar
  23. 23.
    Maidak, JL, Olsen, GJ, Larsen, N, Overbeek, R, McCaughey, MJ, Woese, CR 1997The RDP (ribosomal database project).Nucleic Acids Res25109110PubMedGoogle Scholar
  24. 24.
    Martin, W, Hoffmeister, M, Rotte, C, Henze, K 2001An overview of endosymbiotic models for the origin of eukaryotes, their ATP-producing organelles mitocondria and hydrogenosomes, and their heterotrophic lifestyle.Biol Chem38215211539PubMedGoogle Scholar
  25. 25.
    Matte-Tailliez, O, Brochier, C, Forterre, P, Philippe, H 2002Archaeal phylogeny based on ribosomal proteins.Mol Biol Evol19631639PubMedGoogle Scholar
  26. 26.
    Nisbet, EG, Sleep, NH 2001The habitat and nature of early life.Nature40910831091PubMedGoogle Scholar
  27. 27.
    Olsen, GJ, Woese, CR, Overbeek, R 1994The winds of (evolutionary) change: breathing new life into microbiology.J Bacter17616PubMedGoogle Scholar
  28. 28.
    Pace, NR 1991Origin of life—Facing up to the physical setting.Cell65531533PubMedGoogle Scholar
  29. 29.
    Pace, Nr, Olsen, GJ, Woese, CR 1986Ribosomal RNA phylogeny and the primary lines of evolutionary descent.Cell45325326PubMedGoogle Scholar
  30. 30.
    Staley, JT, Bryant, MP, Plennig, N, Holt, JG 1984Bergey’s manual of systematic (WR Hensyl, ed), Vol 3.Lippincott Williams & WilkinsPhiladelphiaGoogle Scholar
  31. 31.
    Stetter, KO 1995Microbial life in hyperthermal environments.ASM News61285290Google Scholar
  32. 32.
    Swofford, DL 1993PAUP: Phylogenetic analysis using parsimony, version 3.1.1.Laboratory of Molecular Systematics, Smithsonian InstitutionsWashington, DCGoogle Scholar
  33. 33.
    Swofford, DL 1998PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10 (PPC).Sinauer AssociatesSunderland, MAGoogle Scholar
  34. 34.
    Thimpson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res2548764882PubMedGoogle Scholar
  35. 35.
    Wachtershauser, G 1988Before enzymes and templates: Theory of surface metabolism.Microbiol Rev52452484PubMedGoogle Scholar
  36. 36.
    Wachtershauser, G 1998The case for a hyperthermophilic, chemolithoautotrophic origin of life in an iron-sulfur world.Weigel, JAdams, MWW eds. Thermophiles: The keys to molecular evolution and the origin of life?Taylor & FrancisLondon4757Google Scholar
  37. 37.
    Wiegel, JAdams, MWW eds. 1998Thermophiles: The keys to molecular evolution and the origin of life?Taylor & FrancisLondonGoogle Scholar
  38. 38.
    Woese, CR 1987Bacterial evolution.Microbiol Rev51221271PubMedGoogle Scholar
  39. 39.
    Woese, CR 1998The universal ancestor.Proc Natl Acad Sci USA9568546859PubMedGoogle Scholar
  40. 40.
    Woese, CR 2000Interpreting the universal phylogenetic tree.Proc Natl Acad Sci USA9783928396PubMedGoogle Scholar
  41. 41.
    Woese, CR 2002On the evolution of cells.Proc Natl Acad Sci USA9987428747CrossRefPubMedGoogle Scholar
  42. 42.
    Wonnacott, TH, Wonnacott, RJ 1982Introductory statistics.WileyNew York281304Google Scholar
  43. 43.
    Zhang, J, Nei, M 1997Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods.J Mol Evol44S139S146PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  1. 1.Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, Via G. Marconi 10, 80125 Naples, NapoliItaly

Personalised recommendations