Journal of Molecular Evolution

, Volume 57, Issue 5, pp 555–561 | Cite as

A Novel Family of Unconventional Actins in Volvocalean Algae

  • Takako Kato-MinouraEmail author
  • Masayo Okumura
  • Masafumi Hirono
  • Ritsu Kamiya


The unicellular green alga Chlamydomonas reinhardtii has two actin genes, one encoding a conventional actin (90% amino acid identity with mammalian actin), the other a highly divergent actin (64% identity) named novel actin-like protein (NAP). To see whether the presence of conventional and unconventional actins in a single organism is unique to C. reinhardtii, we searched for genomic sequences related to the NAP sequence in several other species of volvocalean algae. Here we show that Chlamydomonas moewusii and Volvox carteri also have, in addition to a conventional actin, an unconventional actin similar to the C. reinhardtii NAP. Analyses of the deduced protein sequences indicated that the NAP homologues form a distinct group derived from conventional actin.


Chlamydomonas Phylogeny Volvocales 



We acknowledge Drs. Tomoaki Nishiyama and Mitsuyasu Hasebe (National Institute for Basic Biology) for their kind help in the phylogenetic analyses and Drs. Takeshi Nakayama and Junichi Miyazaki (University of Tsukuba) for critical reading of the manuscript. The computations were partly performed on an SGI Origin 2000 in the NIBB Computer Laboratory and a SUN workstation (Sakura) in the Science Information Processing Center, University of Tsukuba. This work was supported by Grants-in-Aid for Encouragement of Young Scientists from Japan Society for the Promotion of Science, Japan, to T.K.-M.


  1. 1.
    Adachi, J, Hasegawa, M 1996MOLPHY, version 2.3; Programs for molecular phylogenetics based on maximum likelihood.Comput Sci Monogr281150Google Scholar
  2. 2.
    Cavalier-Smith, T 1992The number of symbiotic origins of organelles.Biosystems2891106CrossRefPubMedGoogle Scholar
  3. 3.
    Cresnar, B, Mages, W, Muller, K, Salbaum, JM, Schmitt, R 1990Structure and expression of a single actin gene in Volvox carteri.Curr Genet18337346PubMedGoogle Scholar
  4. 4.
    Erata, M 2000GEF list of strains 2000 Microalgae and protozoa.Global Environmental ForumTokyoGoogle Scholar
  5. 5.
    Felsenstein, J 1997PHYLIP manual, version 3.5c. Department of Genetics.University of WashingtonSeattleGoogle Scholar
  6. 6.
    Goodson, HV, Hawse, WF 2000Molecular evolution of the actin family.J Cell Sci11526192622PubMedGoogle Scholar
  7. 7.
    Gorman, DS, Levine, RP 1965Cytochrome f and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii.Proc Natl Acad Sci USA5416651669PubMedGoogle Scholar
  8. 8.
    Hepperle, D, Nozaki, H, Hohenberger, S, Huss, VA, Morita, E, Krienitz, L 1998Phylogenetic position of the Phacotaceae within the Chlamydophyceae as revealed by analysis of 18S rDNA and rbcL sequences.J Mol Evol47420430PubMedGoogle Scholar
  9. 9.
    Hirono, M, Uryu, S, Ohara, A, Kato-Minoura, T, Kamiya, R 2003Expression of conventional and unconventional actins in Chlamydomonas reinhardtii upon deflagellation and sexual adhesion.Euk CellGoogle Scholar
  10. 10.
    Ina, Y 1995New methods for estimating the numbers of synonymous and nonsynonymous substitutions.J Mol Evol40190226PubMedGoogle Scholar
  11. 11.
    Jones, DT, Taylor, WR, Thornton, JM, Hepperle, D, Nozaki, H, Hohenberger, S, Huss, VA, Morita, E, Krienitz, L 1992The rapid generation of mutation data matrices from protein sequences.Comput Appl Biosci8275282PubMedGoogle Scholar
  12. 12.
    Kato, T, Kagami, O, Yagi, T, Kamiya, R 1993Isolation of two species of Chlamydomonas reinhardtii flagellar mutants, ida5 and ida6, that lack a newly identified heavy chain of the inner dynein arm.Cell Struct Funct18371377PubMedGoogle Scholar
  13. 13.
    Kato-Minoura, T, Hirono, M, Kamiya, R 1997 Chlamydomonas inner-arm dynein mutant, ida5, has a mutation in an actin-encoding gene.J Cell Biol137649656CrossRefPubMedGoogle Scholar
  14. 14.
    Kato-Minoura, T, Uryu, S, Hirono, M, Kamiya, R 1998Highly divergent actin expressed in a Chlamydomonas mutant lacking the conventional actin gene.Biochem Biophys Res Commun2517176CrossRefPubMedGoogle Scholar
  15. 15.
    Kirk, DL, Kirk, MM 1983Protein synthetic patterns during the asexual life cycle of Volvox carteri.Dev Biol96493506PubMedGoogle Scholar
  16. 16.
    Larson, A, Kirk, MM, Kirk, DL 1992Molecular phylogeny of the volvocine flagellates.Mol Biol Evol985105PubMedGoogle Scholar
  17. 17.
    Lee, VD, Finstad, SL, Huang, B 1997Cloning and characterization of a gene encoding an actin-related protein in Chlamydomonas.Gene197153159CrossRefPubMedGoogle Scholar
  18. 18.
    Miller, SM, Schmitt, R, Kirk, DL 1993 Jordan, an active Volvox transposable element similar to higher plant transposons.Plant Cell511251138Google Scholar
  19. 19.
    Piperno, G, Luck, DJL 1979An actin-like protein is a component of axonemes from Chlamydomonas flagella.J Biol Chem25421872190PubMedGoogle Scholar
  20. 20.
    Schafer, DA, Schroer, TA 1999Actin-related proteins.Annu Rev Cell Dev Biol15341363CrossRefPubMedGoogle Scholar
  21. 21.
    Sheterline, P, Clayton, J, Sparrow, J 1996Actins (3rd ed).Academic PressSan DiegoGoogle Scholar
  22. 22.
    Stibitz, TB, Keeling, PJ, Bhattacharya, D 2000Symbiotic origin of a novel actin gene in the cryptophyte Pyrenomonas helgolandii.Mol Biol Evol1717311738PubMedGoogle Scholar
  23. 23.
    Sugase, Y, Hirono, M, Kindle, KL, Kamiya, R 1996Cloning and characterization of the actin-encoding gene of Chlamydomonas reinhardtii.Gene (Amst.)168117121CrossRefGoogle Scholar
  24. 24.
    Thompson, JD, Higgins, DG, Gibson, TJ 1994CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res2246734680PubMedGoogle Scholar
  25. 25.
    Weber, K, Kabsch, W 1994Intron positions in actin genes seem unrelated to the secondary structure of the protein.EMBO J1312801286PubMedGoogle Scholar
  26. 26.
    Weeks, DP, Beerman, N, Griffith, OM 1986A small-scale five-hour procedure for isolating multiple samples of CsCl-purified DNA: Application to isolations from mammalian, insect, higher plant, algal, yeast, and bacterial sources.Anal Biochem152376385PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  • Takako Kato-Minoura
    • 1
    • 2
    Email author
  • Masayo Okumura
    • 3
  • Masafumi Hirono
    • 4
  • Ritsu Kamiya
    • 1
    • 4
  1. 1.Department of Cell BiologyNational Institute for Basic Biology, Okazaki 444-8585Japan
  2. 2.Institute of Biological SciencesUniversity of Tsukuba, Tsukuba 305-8572Japan
  3. 3.Unit of BiosystemsGraduate School of Human Informatics, Nagoya University, Nagoya 464-8601Japan
  4. 4.Department of Biological SciencesGraduate School of Science, University of Tokyo, Tokyo 113-0033Japan

Personalised recommendations