Advertisement

Journal of Molecular Evolution

, Volume 57, Issue 4, pp 446–452 | Cite as

Isolation of a Neurotoxin (α-colubritoxin) from a Nonvenomous Colubrid: Evidence for Early Origin of Venom in Snakes

  • Bryan G. Fry
  • Natalie G. Lumsden
  • Wolfgang Wüster
  • Janith C. Wickramaratna
  • Wayne C. Hodgson
  • R. Manjunatha Kini
Article

Abstract

The evolution of venom in advanced snakes has been a focus of long-standing interest. Here we provide the first complete amino acid sequence of a colubrid toxin, which we have called α-colubritoxin, isolated from the Asian ratsnake Coelognathus radiatus (formerly known as Elaphe radiata), an archetypal nonvenomous snake as sold in pet stores. This potent postsynaptic neurotoxin displays readily reversible, competitive antagonism at the nicotinic receptor. The toxin is homologous with, and phylogenetically rooted within, the three-finger toxins, previously thought unique to elapids, suggesting that this toxin family was recruited into the chemical arsenal of advanced snakes early in their evolutionary history. LC-MS analysis of venoms from most other advanced snake lineages revealed the widespread presence of components of the same molecular weight class, suggesting the ubiquity of three-finger toxins across advanced snakes, with the exclusion of Viperidae. These results support the role of venom as a key evolutionary innovation in the early diversification of advanced snakes and provide evidence that forces a fundamental rethink of the very concept of nonvenomous snake.

Keywords

Neurotoxin Venom Evolution Multi-gene Three finger Snake 

Notes

Acknowledgements

We would like to thank Dr. Paolo Martelli, Sheik Fadil Ryan Ramjan, and Timothy Jackson for all their help. We would also like to thank the Singapore Zoo for the provision of space and facilities for our snake collection. We are grateful for the financial assistance of the Australia and Pacific Science Foundation, Biomedical Medical Research Council (Singapore), and the Monash University Small Grant Scheme.

References

  1. 1.
    Broaders, M, Faro, C, Ryan, MF 1999Partial purification of acetylcholine receptor binding components from the Duvernoy’s secretions of Blanding’s tree snake (Boiga blandingi) and the mangrove snake (Boiga dendrophila).J Nat Toxins8155166PubMedGoogle Scholar
  2. 2.
    Chang, CC 1999Looking back on the discovery of α-bungarotoxin.J Biomed Sci6368375CrossRefPubMedGoogle Scholar
  3. 3.
    Chippaux, JP, Williams, V, White, J 1991Snake venom variability: Methods of study, results and interpretation.Toxicon2912791303CrossRefPubMedGoogle Scholar
  4. 4.
    Endo, T, Tamiya, N 1987Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms.Pharmacol Therapeut34405512Google Scholar
  5. 5.
    Fleming, TJ, Ohigin, C, Malek, TR 1993Characterization of two novel Ly-6 genes. Protein sequence and potential structural similarity to α-bungarotoxin and other neurotoxins.J Immunol15053795390PubMedGoogle Scholar
  6. 6.
    Fry, BG, Wüster, W, Kini, RM, Brusic, V, Khan, A, Venkataraman, D, Rooney, AP 2003Molecular evolution and phylogeny of snake venom three-finger toxins.J Mol Evol57110129CrossRefPubMedGoogle Scholar
  7. 7.
    Greene, HW 1997Snakes: The evolution of mystery in nature.University of California PressBrekelyGoogle Scholar
  8. 8.
    Gumley, TP, McKenzie, IFC, Sandrin, MS 1995Tissue expression, structure and function of the murine Ly-6 family of molecules.Immunol Cell Biol73277296PubMedGoogle Scholar
  9. 9.
    Harvey, AL, Barfaraz, A, Thomson, E, Faiz, A, Preston, S, Harris, JB 1994Screening of snake venoms for neurotoxic and myotoxic effects using simple in vitro preparations from rodents and chicks.Toxicon32257265CrossRefPubMedGoogle Scholar
  10. 10.
    Helfenberger, N 2001Phylogenetic relationships of Old World ratsnakes based on visceral organ topography, osteology, and allozyme variation.Russ J Herpetol8S1S62Google Scholar
  11. 11.
    Hill, RE, Mackessy, SP 1997Venom yields from several species of colubrid snakes and differential effects of ketamine.Toxicon35671678CrossRefPubMedGoogle Scholar
  12. 12.
    Hill, RE, Mackessy, SP 2000Characterization of venom (Duvernoy’s secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins.Toxicon3816631687CrossRefPubMedGoogle Scholar
  13. 13.
    Huelsenbeck, JP, Ronquist, F 2001MrBayes—Bayesian inference of phylogeny, version 3.0b4.Bioinformatics17754755CrossRefPubMedGoogle Scholar
  14. 14.
    Kamiguti, AS, Theakston, RD, Sherman, N, Fox, JW 2000Mass spectrophotometric evidence for P-III/P-IV metalloproteinases in the venom of the Boomslang.Toxicon3816131620CrossRefPubMedGoogle Scholar
  15. 15.
    Kini, RM 2002Molecular folds with multiple missions: Functional sites in three-finger toxins.Clin Exp Pharmacol Physiol29815822CrossRefPubMedGoogle Scholar
  16. 16.
    Kraus, F, Brown, WM 1998Phylogenetic relationships of colubroid snakes based on mitochondrial DNA sequences.Zoo J Linn Soc122455487CrossRefGoogle Scholar
  17. 17.
    Levinson, SR, Evans, MH, Groves, F 1976A neurotoxic component of the venom from Blanding’s tree snake (Boiga blandingii).Toxicon14307312CrossRefPubMedGoogle Scholar
  18. 18.
    Mackessy, SP 2002Biochemistry and pharmacology of colubrid snake venoms.J Toxicol Toxin Rev214383CrossRefGoogle Scholar
  19. 19.
    Ménez, A 1998Functional architectures of animal toxins: A clue to drug design?Toxicon3615571572CrossRefPubMedGoogle Scholar
  20. 20.
    Miwa, JM, Ibanez-Tallon, I, Crabtree, GW, Sanchez, R, Sali, A, Role, LW, Heintz, N 1999lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS.Neuron23105114PubMedGoogle Scholar
  21. 21.
    Nirthanan, S, Charpantier, E, Gopalakrishnakone, P, Gwee, MC, Khoo, HE, Cheah, LS,  et al. 2002Candoxin, a novel toxin from Bungarus candidus, is a reversible antagonist of muscle (alphabetagammadelta) but a poorly reversible antagonist of neuronal alpha 7 nicotinic acetylcholine receptors.J Biol chem2771781117820CrossRefPubMedGoogle Scholar
  22. 22.
    Ronquist, F, Huelsenbeck, JP 2003MrBayes3: Bayesian phylogenetic inference under mixed models.Bioinformaticsin pressCrossRefPubMedGoogle Scholar
  23. 23.
    Slowinski, JB, Lawson, R 2002Snake phylogeny: Evidence from nuclear and mitochondrial genes.Mol Phylogenet Evol24194202CrossRefPubMedGoogle Scholar
  24. 24.
    Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res2548764882PubMedGoogle Scholar
  25. 25.
    Utkin, YN, Kukhtina, VV, Kryukova, EV, Chiodini, F, Bertrand, D, Methfessel, C, Tsetlin, VI 2001“Weak toxin” from Naja kaouthia is a nontoxic antagonist of alpha 7 and muscle-type nicotinic acetylcholine receptors.J Biol Chem2761581015815CrossRefPubMedGoogle Scholar
  26. 26.
    Underwood, G, Kochva, E 1993On the affinities of the burrowing asps Atractaspis (Serpentes: Atractaspididae).Zool J Linn Soc107364CrossRefGoogle Scholar
  27. 27.
    Vidal, N 2002Colubroid systematics: Evidence for an early appearance of the venom apparatus followed by extensive evolutionary tinkering.J Toxicol Toxin Rev212141CrossRefGoogle Scholar
  28. 28.
    Vidal, N, Hedges, SB 2002Higher-level relationships of caenophidian snakes inferred from four nuclear and mitochondrial genes.C R Biologies325987995CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  • Bryan G. Fry
    • 1
    • 2
  • Natalie G. Lumsden
    • 3
  • Wolfgang Wüster
    • 4
  • Janith C. Wickramaratna
    • 3
  • Wayne C. Hodgson
    • 3
  • R. Manjunatha Kini
    • 1
  1. 1.Department of Biological Sciences, Faculty of ScienceNational University of Singapore, 119260 Singapore
  2. 2.Australian Venom Research Unit, Department of PharmacologyUniversity of Melbourne, Parkville, Victoria 3010Australia
  3. 3.Monash Venom Group, Department of PharmacologyMonash University, Victoria 3800Australia
  4. 4.School of Biological SciencesUniversity of Wales, Bangor, LL57 2UW, WalesUnited Kingdom

Personalised recommendations