Journal of Molecular Evolution

, Volume 57, Issue 3, pp 343–354 | Cite as

Rates of DNA Duplication and Mitochondrial DNA Insertion in the Human Genome

  • Douda Bensasson
  • Marcus W. Feldman
  • Dmitri A. Petrov


The hundreds of mitochondrial pseudogenes in the human nuclear genome sequence (numts) constitute an excellent system for studying and dating DNA duplications and insertions. These pseudogenes are associated with many complete mitochondrial genome sequences and through those with a good fossil record. By comparing individual numts with primate and other mammalian mitochondrial genome sequences, we estimate that these numts arose continuously over the last 58 million years. Our pairwise comparisons between numts suggest that most human numts arose from different mitochondrial insertion events and not by DNA duplication within the nuclear genome. The nuclear genome appears to accumulate mtDNA insertions at a rate high enough to predict within-population polymorphism for the presence/absence of many recent mtDNA insertions. Pairwise analysis of numts and their flanking DNA produces an estimate for the DNA duplication rate in humans of 2.2 × 10−9 per numt per year. Thus, a nucleotide site is about as likely to be involved in a duplication event as it is to change by point substitution. This estimate of the rate of DNA duplication of noncoding DNA is based on sequences that are not in duplication hotspots, and is close to the rate reported for functional genes in other species.


Numt numtDNA Segmental duplication Human population genetic markers 



Many thanks for helpful discussion, advice, and comments on the manuscript go to Aviv Bergman, Casey M. Bergman, Krista K. Ingram, and Dennis P. Wall, and to Jeffrey L. Boore for support in the later stages of this work. The comments of two anonymous reviewers substantially improved the manuscript. This work was partly funded by the Center for Computational Genetics and Biological Modeling.


  1. 1.
    Bailey, JA, Gu, Z, Clark, RA, Reinert, K, Samonte, RV, Schwatz, S, Adams, MD, Myers, EW, Li, PW, Eichler, EE 2002aRecent segmental duplications in the human genome.Science29710031007Google Scholar
  2. 2.
    Bailey, JA, Yavor, AM, Viggiano, L, Misceo, D, Horvath, JE, Archidiacono, N, Shchwartz, S, Rocchi, M, Eichler, EE 2002bHuman-specific duplication and mosaic transcripts: The recent paralogous structure of chromosome 22.Am J Hum Gene7083100Google Scholar
  3. 3.
    Bensasson, D, Zhang, D-X, Hewitt, GM 2000Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes.Mol Biol Evol17406415PubMedGoogle Scholar
  4. 4.
    Bensasson, D, Zhang, D-X, Hartl, DL, Hewitt, GM 2001Mitochondrial pseudogenes: Evolution’s misplaced witnesses.Trends Ecol Evol16314321PubMedGoogle Scholar
  5. 5.
    Brown, WM, Prager, EM, Wang, A, Wilson, AC 1982Mitochondrial DNA sequences of primates: Tempo and mode of evolution.J Mol Evol18225239PubMedGoogle Scholar
  6. 6.
    Fukuda, M, Wakasugi, S, Tsuzuki, T, Nomiyama, H, Shimada, K, Miyata, T 1985Mitochondrial DNA-like sequences in the human nuclear genome.J Mol Biol186257266PubMedGoogle Scholar
  7. 7.
    Gellissen, G, Michaelis, G 1987Gene transfer: Mitochondria to nucleus.Ann NY Acad Sci503391401PubMedGoogle Scholar
  8. 8.
    Goodman, M, Porter, CA, Czelusniak, J, Page, SL, Schneider, H, Shoshani, J, Gunnell, G, Groves, CP 1998Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence.Mol Phylogenet Evol9585598PubMedGoogle Scholar
  9. 9.
    Graur, D, Shuali, Y, Li, W-H 1989Deletions in processed pseudogenes accumulate faster in rodents than in humans.J Mol Evol28279285PubMedGoogle Scholar
  10. 10.
    Gu, Z, Cavalcanti, A, Chen, F-C, P, B, Li, W-H 2002Extent of gene duplication in the genomes of Drosophila, nematode, and yeast.Mol Biol Evol19256262PubMedGoogle Scholar
  11. 11.
    Hall, TA 1999BioEdit: A user-friendly biological sequence alignment editor and analysis (program for windows 95/98/NT).Nucleic Acids Symp Ser419598Google Scholar
  12. 12.
    Hasegawa, M, Kishino, H, Yano, T 1985Dating of the human–ape splitting by a molecular clock of mitochondrial DNA.J Mol Evol22160174PubMedGoogle Scholar
  13. 13.
    Hazkani-Covo, E, Sorek, R, Graur, D 2003Evolutionary dynamics of large numts in the human genome: Rarity of independent insertions and abundance of postinsertion duplications.J Mol Evol56169174CrossRefPubMedGoogle Scholar
  14. 14.
    Hu, G, Thilly, WG 1994Evolutionary trail of the mitchondrial genome as based on human 16S rDNA pseudogenes.Gene147197204CrossRefPubMedGoogle Scholar
  15. 15.
    International Human Genome Sequencing Consortium2001Initial sequencing and analysis of the human genome.Nature409860921PubMedGoogle Scholar
  16. 16.
    Li, W-H 1997Molecular evolution.Sinauer AssociatesSunderland, MAGoogle Scholar
  17. 17.
    Long, M, Thornton, K 2001Gene duplication and evolution.Science2931551aCrossRefGoogle Scholar
  18. 18.
    Lynch, M, Conery, JS 2000The evolutionary fate and consequences of duplicate genes.Science29011511155CrossRefPubMedGoogle Scholar
  19. 19.
    Lynch, M, Conery, JS 2001Gene duplication and evolution.Science2931551aCrossRefGoogle Scholar
  20. 20.
    Mourier, T, Hansen, AJ, Willerslev, E, Arctander, P 2001The human genome project reveals a continuous transfer of large mitochondrial fragments to the nucleus.Mol Biol Evol1818331837Google Scholar
  21. 21.
    Mundy, NI, Pissinatti, A, Woodruff, DS 2000Multiple nuclear insertions of mitochondrial cytochrome b sequences in callitrichine primates.Mol Biol Evol1710751080PubMedGoogle Scholar
  22. 22.
    Ogurtsov, AY, Roytberg, MA, Shabalina, SA, Kondrashov, AS 2002OWEN: Aligning long colinear regions of genomes.Bioinformatics1817031704CrossRefPubMedGoogle Scholar
  23. 23.
    Ophir, R, Graur, D 1997Patterns and rates of indel evolution in processed pseudogenes from humans and murids.Gene205191202PubMedGoogle Scholar
  24. 24.
    Perna, NT, Kocher, TD 1996Mitochondrial DNA: Molecular fossils in the nucleus.Curr Biol6128129PubMedGoogle Scholar
  25. 25.
    Przeworski, M, Hudson, RR, Di Rienzo, A 2000Adjusting the focus on human variation.Trends Genet16296302PubMedGoogle Scholar
  26. 26.
    Samonte, RV, Eichler, EE 2002Segmental duplications and the evolution of the primate genome.Nature Rev Genet36572CrossRefGoogle Scholar
  27. 27.
    Schmitz, J, Ohme, M, Zischler, H 2001SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates.Genetics157777784PubMedGoogle Scholar
  28. 28.
    Schmitz, J, Ohme, M, Zischler, H 2002The complete mitochondrial sequence of Tarsius bancanus: Evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA.Mol Biol Evol19544553PubMedGoogle Scholar
  29. 29.
    Swofford, DL 2002PAUP*: Phylogenetic analysis using parsimony (* and other methods).Sinauer AssociatesSunderland, MAGoogle Scholar
  30. 30.
    Thomas, R, Zischler, H, Paabo, S, Stoneking, M 1996Novel mitochondrial DNA insertion polymorphism and its usefulness for human population studies.Hum Biol68847854PubMedGoogle Scholar
  31. 31.
    Tourmen, Y, Baris, O, Dessen, P, Jacques, C, Malthiéry, Y, Reynier, P 2002Structure and chromosomal distribution of human mitochondrial pseudogenes.Genomics807177CrossRefPubMedGoogle Scholar
  32. 32.
    Watterson, GA 1975On the number of segregating sites in genetical models without recombination.Theor Popul Biol7256276PubMedGoogle Scholar
  33. 33.
    Woischnik, M, Moraes, CT 2002Pattern of organization of human mitochondrial pseudogenes in the nuclear genome.Genome Res12885893PubMedGoogle Scholar
  34. 34.
    Yang, Z 1997PAML: A program package for phylogenetic analysis by maximum likelihood.CABIOS13PubMedGoogle Scholar
  35. 35.
    Yuan, JD, Shi, JX, Meng, GX, An, LG, Hu, GX 1999Nuclear pseudogenes of mitochondrial DNA as a variable part of the human genome.Cell Res9281290PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  • Douda Bensasson
    • 1
  • Marcus W. Feldman
    • 1
  • Dmitri A. Petrov
    • 1
  1. 1.School of Biological SciencesStanford University, 371 Serra Mall, Stanford, CA 94305USA

Personalised recommendations