Journal of Molecular Evolution

, Volume 57, Issue 3, pp 325–334 | Cite as

Strand Compositional Asymmetries of Nuclear DNA in Eukaryotes

Article

Abstract

Both DNA replication and transcription are structurally asymmetric processes. An asymmetric nucleotide substitution pattern has been observed between the leading and the lagging strand, and between the coding and the noncoding strand, in eubacterial, viral, and organelle genomes. Similar studies in eukaryotes have been rare, because the origins of replication in nuclear genomes are mostly unknown and the replicons are much shorter than those of prokaryotes. To circumvent these predicaments, all possible pairs of neighboring genes that are located on different strands of nuclear DNA were selected from the complete genomes of Saccharomycescerevisiae, Schizosaccharomycespombe, Plasmodiumfalciparum, Encephalitozooncuniculi, Arabidopsisthaliana, Caenorhabditiselegans, Drosophilamelanogaster, Anophelesgambiae, Musmusculus, and Homosapiens. For such a pair of genes, one is likely coded from the leading strand and the other from the lagging strand. By examining the introns and the fourfold degenerate sites of codons in the genes of each pair, we found that the relative frequencies of T vs. A and of G vs. C are significantly skewed in most eukaryotes studied. In a gene pair, the potential effects of replication- and transcription-associated mutation bias on strand asymmetry are in the same direction for one gene where leading strand synthesis shares the same template with transcription, while they tend to be canceled out in the other gene. Our study demonstrates that DNA replication-associated and transcription-associated mutation bias and/or selective codon usage bias may affect the strand nucleotide composition asymmetrically in eukaryotic genomes.

Keywords

DNA replication Eukaryote Mutational bias Single strand Strand asymmetry Transcription 

References

  1. 1.
    Adams, MD, Celniker, SE, Holt, RA,  et al. 2000The genome sequence of Drosophilamelanogaster.Science28721852195CrossRefPubMedGoogle Scholar
  2. 2.
    Beletskii, A, Bhagwat, AS 2001Transcription-induced cytosine-to-thymine mutations are not dependent on sequence context of the target cytosine.J Bacteriol18364916493CrossRefPubMedGoogle Scholar
  3. 3.
    Blattner, FR, Plunkett III, G, Bloch, CA,  et al. 1997The complete genome sequence of Escherichiacoli K-12.Science27714531462PubMedGoogle Scholar
  4. 4.
    Brewer, BJ, Fangman, WL 1993Initiation at closely spaced replication origins in a yeast chromosome.Science26217281731PubMedGoogle Scholar
  5. 5.
    Bulmer, M 1991Strand symmetry of mutation-rates in the beta-globin region.J Mol Evol33305310PubMedGoogle Scholar
  6. 6.
    Buss, LW 1987The evolution of individuality.Princeton University PressPrinceton, NJGoogle Scholar
  7. 7.
    Fijalkowska, IJ, Jonczyk, P, Tkaczyk, MM, Bialoskorska, M, Schaaper, RM 1998Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome.Proc Natl Acad Sci USA951002010025CrossRefPubMedGoogle Scholar
  8. 8.
    Francino, MP, Ochman, H 2000Strand symmetry around the β-globin origin of replication in primates.Mol Biol Evol17416422PubMedGoogle Scholar
  9. 9.
    Francino, MP, Ochman, H 2001Deamination as the basis of strand-asymmetric evolution in transcribed Escherichiacoli sequences.Mol Biol Evol1811471150PubMedGoogle Scholar
  10. 10.
    Frank, AC, Lobry, JR 1999Asymmetric substitution patterns: A review of possible underlying mutational or selective mechanisms.Gene2386577CrossRefPubMedGoogle Scholar
  11. 11.
    Fraser, CM, Casjens, S, Huang, WM,  et al. 1997Genomic sequence of a Lyme disease spirochaete, Borreliaburgdorferi.Nature390580586PubMedGoogle Scholar
  12. 12.
    Frederico, LA, Kunkel, TA, Shaw, BR 1990A sensitive genetic assay for the detection of cytosine deamination: Determination of rate constants and the activation energy.Biochemistry2925322537PubMedGoogle Scholar
  13. 13.
    Gardner, MJ, Hall, N, Fung, E,  et al. 2002Genome sequence of the human malaria parasite Plasmodiumfalciparum.Nature419498511CrossRefPubMedGoogle Scholar
  14. 14.
    Gawel, D, Jonczyk, P, Bialoskorska, M, Schaaper, RM, Fijalkowska, IJ 2002Asymmetry of frameshift mutagenesis during leading and lagging-strand replication in Escherichiacoli.Mutat Res501129136CrossRefPubMedGoogle Scholar
  15. 15.
    Gierlik, A, Kowalczuk, M, Mackiewicz, P, Dudek, MR, Cebrat, S 2000Is there replication-associated mutational pressure in the Saccharomycescerevisiae genome?J Theor Biol202305314CrossRefPubMedGoogle Scholar
  16. 16.
    Goffeau, A, Barrell, BG, Bussey, H,  et al. 1996Life with 6000 genes.Science274546567PubMedGoogle Scholar
  17. 17.
    Graur, D, Li, W-H 2000Fundamentals of molecular evolution.Sinauer AssociatesSunderland, MAGoogle Scholar
  18. 18.
    Green, P, Ewing, B, Miller, W,  et al. 2003Transcription-associated mutational asymmetry in mammalian evolution.Nature Genet33514517CrossRefPubMedGoogle Scholar
  19. 19.
    Grigoriev, A 1998Analyzing genomes with cumulative skew diagrams.Nucleic Acids Res2622862290CrossRefPubMedGoogle Scholar
  20. 20.
    Grigoriev, A 1999Strand-specific compositional asymmetries in double-stranded DNA viruses.Virus Res60119CrossRefPubMedGoogle Scholar
  21. 21.
    Holt, RA, Subramanian, GM, Halpern, A,  et al. 2002The genome sequence of the malaria mosquito Anophelesgambiae.Science298129149CrossRefPubMedGoogle Scholar
  22. 22.
    Hyrien, O, Marheineke, K, Goldar, A 2003Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem.Bioessays25116125CrossRefPubMedGoogle Scholar
  23. 23.
    International Human Genome Sequencing Consortium2001Initial sequencing and analysis of the human genome.Nature409860921PubMedGoogle Scholar
  24. 24.
    Izuta, S, Roberts, JD, Kunkel, TA 1995Replication error rates for G·GTP, T · GTP, and A · GTP mispairs and evidence for differential proofreading by leading and lagging strand DNA replication complexes in human cells.J Biol Chem27025952600CrossRefPubMedGoogle Scholar
  25. 25.
    Katinka, MD, Duprat, S, Cornillot, E,  et al. 2001Genome sequence and gene compaction of the eukaryote parasite Encephalitozooncuniculi.Nature414450453CrossRefPubMedGoogle Scholar
  26. 26.
    Kowalczuk, M, Mackiewicz, P, Mackiewicz, D, Nowicka, A, Dudkiewicz, M, Dudek, MR, Cebrat, S 2001DNA asymmetry and the replicational mutational pressure.J Appl Genet42553577PubMedGoogle Scholar
  27. 27.
    Kunkel, TA 1992Biological asymmetries and the fidelity of eukaryotic DNA replication.Bioessays14303308PubMedGoogle Scholar
  28. 28.
    Kunst, F, Ogasawara, N, Moszer, I,  et al. 1997The complete genome sequence of the Gram-positive bacterium Bacillussubtilis.Nature390249256PubMedGoogle Scholar
  29. 29.
    Lewin, B 1997Genes VI.Oxford University PressOxfordGoogle Scholar
  30. 30.
    Lobry, JR 1995Properties of a general-model of DNA evolution under no-strand-bias conditions.J Mol Evol40326330PubMedGoogle Scholar
  31. 31.
    Lobry, JR 1996aAsymmetric substitution patterns in the two DNA strands of bacteria.Mol Biol Evol13660665Google Scholar
  32. 32.
    Lobry, JR 1996bA simple vectorial representation of DNA sequences for the detection of replication origins in bacteria.Biochimie78323326Google Scholar
  33. 33.
    Lobry, JR, Lobry, C 1999Evolution of DNA base composition under no-strand-bias conditions when the substitution rates are not constant.Mol Biol Evol16719723PubMedGoogle Scholar
  34. 34.
    McLean, MJ, Wolfe, KH, Devine, KM 1998Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes.J Mol Evol47691696PubMedGoogle Scholar
  35. 35.
    Mouse Genome Sequencing Consortium2002Initial sequencing and comparative analysis of the mouse genome.Nature420520562CrossRefPubMedGoogle Scholar
  36. 36.
    Mrazek, J, Karlin, S 1998Strand compositional asymmetry in bacterial and large viral genomes.Proc Natl Acad Sci USA9537203725CrossRefPubMedGoogle Scholar
  37. 37.
    Picardeau, M, Lobry, JR, Hinnebusch, BJ 2000Analyzing DNA strand compositional asymmetry to identify candidate replication origins of Borrelia burgdorferi linear and circular plasmids.Genome Res1015941604CrossRefPubMedGoogle Scholar
  38. 38.
    Raghuraman, MK, Winzeler, EA, Collingwood, D,  et al. 2001Replication dynamics of the yeast genome.Science294115121PubMedGoogle Scholar
  39. 39.
    Reyes, A, Gissi, C, Pesole, G, Saccone, C 1998Asymmetrical directional mutation pressure in the mitochondrial genome of mammals.Mol Biol Evol15957966PubMedGoogle Scholar
  40. 40.
    Rocha, EPC, Danchin, A 2001Ongoing evolution of strand composition in bacterial genomes.Mol Biol Evol1817891799PubMedGoogle Scholar
  41. 41.
    Rocha, EPC, Danchin, A, Viari, A 1999Universal replication biases in bacteria.Mol Microbiol321116CrossRefPubMedGoogle Scholar
  42. 42.
    Shioiri, C, Takahata, N 2001Skew of mononucleotide frequencies, relative abundance of dinucleotides, and DNA strand asymmetry.J Mol Evol53364376CrossRefPubMedGoogle Scholar
  43. 43.
    Sueoka, N 1995Intrastrand parity rules of DNA-base composition and usage biases of synonymous codons.J Mol Evol40318325PubMedGoogle Scholar
  44. 44.
    The Arabidopsis Genome Initiative2000Analysis of the genome sequence of the flowering plant Arabidopsisthaliana.Nature408796815PubMedGoogle Scholar
  45. 45.
    The C. elegans Sequencing Consortium1998Genome sequence of the nematode C. elegans: A platform for investigating biology.Science28220122018PubMedGoogle Scholar
  46. 46.
    Tillier, ERM, Collins, RA 2000The contributions of replication orientation, gene direction, and signal sequences to base-composition asymmetries in bacterial genomes.J Mol Evol50249257PubMedGoogle Scholar
  47. 47.
    Wood, V, Gwilliam, R, Rajandream, MA,  et al. 2002The genome sequence of Schizosaccharomycespombe.Nature415871880PubMedGoogle Scholar
  48. 48.
    Wu, CI, Maeda, N 1987Inequality in mutation-rates of the 2 strands of DNA.Nature327169170PubMedGoogle Scholar
  49. 49.
    Wyrick, JJ, Aparicio, JG, Chen, T, Barnett, JD, Jennings, EG, Young, RA, Bell, SP, Aparicio, OM 2001Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: High-resolution mapping of replication origins.Science29423572360PubMedGoogle Scholar
  50. 50.
    Zawilak, A, Cebrat, S, Mackiewicz, P, Krol-Hulewicz, A, Jakimowicz, D, Messer, W, Gosciniak, G, Zakrzewska-Czerwinska, J 2001Identification of a putative chromosomal replication origin from Helicobacterpylori and its interaction with the initiator protein DnaA.Nucleic Acids Res2922512259CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  1. 1.MOE Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life Sciences, Beijing Normal University, Beijing 100875China

Personalised recommendations