Journal of Molecular Evolution

, Volume 57, Issue 3, pp 309–324

Intra- and Interbacterial Genetic Exchange of Lyme Disease Spirochete erp Genes Generates Sequence Identity Amidst Diversity



All isolates of the spirochete Borreliaburgdorferi contain multiple, different plasmids of the cp32 family, each of which contains a locus encoding Erp surface proteins. Many of these proteins are known to bind host complement regulatory factor H, enabling the bacteria to avoid killing by the alternative complement pathway during vertebrate infection. In the present study, we characterized the erp loci and cp32 plasmids of strains N40, Sh-2-82, and 297 and compared them to the previously determined cp32 sequences of type strain B31. Bacteria of strain N40 contain 6 different cp32s, those of Sh-2-82 contain 10, and 297 bacteria contain 9 cp32s. Significant conservation between all strains was noted for the cp32 loci responsible for plasmid maintenance, indicating close relationships that appear to correspond with incompatibility groups. In contrast, considerable diversity was found between erp gene sequences, both within individual bacteria and between different strains. However, examples of identities among erp loci were found, with strains Sh-2-82, 297, and B31 each containing three identical loci that likely arose through intrabacterial genetic rearrangements. These studies also found the first evidence of large-scale genetic exchanges between Lyme disease spirochetes in nature, including the apparent transfer of an entire cp32 plasmid between two different bacteria.


Borrelia burgdorferi Factor H OspE-related protein cp32 Plasmid Lyme disease 


  1. 1.
    Akins, DR, Caimano, MJ, Yang, X, Cerna, F, Norgard, MV, Radolf, JD 1999Molecular and evolutionary analysis of Borreliaburgdorferi 297 circular plasmid-encoded lipoproteins with OspE- and OspF-like leader peptides.Infect Immun6715261532PubMedGoogle Scholar
  2. 2.
    Akins, DR, Porcella, SF, Popova, TG, Shevchenko, D, Baker, SI, Li, M, Norgard, MV, Radolf, JD 1995Evidence for in vivo but not in vitro expression of a Borreliaburgdorferi outer surface protein F (OspF) homologue.Mol Microbiol18507520PubMedGoogle Scholar
  3. 3.
    Alitalo, A, Meri, T, Lankinen, H, Seppälä, I, Lahdenne, P, Hefty, PS, Akins, D, Meri, S 2002Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded outer surface protein E paralogs.J Immunol16938473853PubMedGoogle Scholar
  4. 4.
    Alitalo, A, Meri, T, Rämö, L, Jokiranta, TS, Heikkilä, T, Seppälä, IJT, Oksi, J, Viljanen, M, Meri, S 2001Complement evasion by Borreliaburgdorferi: Serum-resistant strains promote C3b inactivation.Infect Immun6936853691CrossRefPubMedGoogle Scholar
  5. 5.
    Amouriaux, P, Assous, M, Margarita, D, Baranton, G, Saint Girons, I 1993Polymerase chain reaction with the 30-kb circular plasmid of Borreliaburgdorferi B31 as a target for detection of the Lyme borreliosis agents in cerebrospinal fluid.Res Microbiol144211219CrossRefPubMedGoogle Scholar
  6. 6.
    Babb, K, El-Hage, N, Miller, JC, Carroll, JA, Stevenson, B 2001Distinct regulatory pathways control the synthesis of Borreliaburgdorferi infection-associated OspC and Erp surface proteins.Infect Immun6941464153CrossRefPubMedGoogle Scholar
  7. 7.
    Barthold, SW, Moody, KD, Terwilliger, GA, Duray, PH, Jacoby, RO, Steere, AC 1988Experimental Lyme arthritis in rats infected with Borreliaburgdorferi.J Infect Dis157842846Google Scholar
  8. 8.
    Barthold, SW, de Souza, MS, Janotka, JL, Smith, AL, Persing, DH 1993Chronic Lyme borreliosis in the laboratory mouse.Am J Pathol143959972PubMedGoogle Scholar
  9. 9.
    Bissett, ML, Hill, W 1987Characterization of Borreliaburgdorferi strains isolated from Ixodespacificus ticks in California.J Clin Microbiol2522962301PubMedGoogle Scholar
  10. 10.
    Burgdorfer, W, Barbour, AG, Hayes, SF, Benach, JL, Grunwaldt, E, Davis, JP 1982Lyme disease—A tick-borne spirochetosis?Science21613171319PubMedGoogle Scholar
  11. 11.
    Caimano, MJ, Yang, X, Popova, TG, Clawson, ML, Akins, DR, Norgard, MV, Radolf, JD 2000Molecular and evolutionary characterization of the cp32/18 family of supercoiled plasmids in Borreliaburgdorferi 297.Infect Immun6815741586CrossRefPubMedGoogle Scholar
  12. 12.
    Carlyon, JA, Roberts, DM, Theisen, M, Sadler, C, Marconi, RT 2000Molecular and immunological analyses of the Borreliaturicatae Bdr protein family.Infect Immun6823692373CrossRefPubMedGoogle Scholar
  13. 13.
    Casjens, S, Palmer, N, van Vugt, R, Huang, WM, Stevenson, B, Rosa, P, Lathigra, R, Sutton, G, Peterson, J, Dodson, RJ, Haft, D, Hickey, E, Gwinn, M, White, O, Eraser, C 2000A bacterial genome in flux: The twelve linear and nine circular extrachromosomal DNAs of an infectious isolate of the Lyme disease spirochete Borreliaburgdorferi.Mol Microbiol35490516CrossRefPubMedGoogle Scholar
  14. 14.
    Casjens, S, van Vugt, R, Tilly, K, Rosa, PA, Stevenson, B 1997Homology throughout the multiple 32-kilobase circular plasmids present in Lyme disease spirochetes.J Bacteriol179217227PubMedGoogle Scholar
  15. 15.
    Damman, CJ, Eggers, CH, Samuels, DS, Oliver, DB 2000Characterization of Borreliaburgdorferi BlyA and BlyB proteins: a prophage-encoded holin-like system.J Bacteriol18267916797CrossRefPubMedGoogle Scholar
  16. 16.
    Dykhuizen, DE, Baranton, G 2001Implications of a low rate of horizontal transfer in Borrelia.Trends Microbiol9344350CrossRefPubMedGoogle Scholar
  17. 17.
    Dykhuizen, DE, Polin, DS, Dunn, J, Wilske, B, Preac-Mursic, V, Dattwyler, RJ, Luft, BJ 1993Borreliaburgdorferi is clonal: implications for taxonomy and vaccine development.Proc Natl Acad Sci USA901016310167PubMedGoogle Scholar
  18. 18.
    Eggers, CH, Samuels, DS 1999Molecular evidence for a new bacteriophage of Borreliaburgdorferi.J Bacteriol18173087313PubMedGoogle Scholar
  19. 19.
    Eiggers, CH, Casjens, S, Samuels, DS 2001a

    Bacteriophages of Borreliaburgdorferi and other spirochetes.

    Saier, MHGarcía-Lara, J eds. The spirochetes: molecular and cellular biology.Horizon Press,Oxford3544
    Google Scholar
  20. 20.
    Eggers, CH, Kimmel, BJ, Bono, JL, Elias, AF, Rosa, P, Samuels, DS 2001bTransduction by øBB-1, a bacteriophage of Borreliaburgdorferi.J Bacteriol18347714778Google Scholar
  21. 21.
    Eggers, CH, Caimano, MJ, Clawson, ML, Miller, WG, Samuels, DS, Radolf, JD 2002Identification of loci critical for replication and compatibility of a Borreliaburgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the Lyme disease spirochaete.Mol Microbiol43281295CrossRefPubMedGoogle Scholar
  22. 22.
    El-Hage, N, Stevenson, B 2002Simultaneous coexpression of Borreliaburgdorferi Erp proteins occurs through a specific, erp locus-directed regulatory mechanism.J Bacteriol18445364543CrossRefPubMedGoogle Scholar
  23. 23.
    El-Hage, N, Lieto, LD, Stevenson, B 1999Stability of erp loci during Borreliaburgdorferi infection: Recombination is not required for chronic infection of immunocompetent mice.Infect Immun6731463150PubMedGoogle Scholar
  24. 24.
    El-Hage, N, Babb, K, Carroll, JA, Lindstrom, N, Fischer, ER, Miller, JC, Gilmore Jr, RD, Mbow, ML, Stevenson, B 2001Surface exposure and protease insensitivity of Borreliaburgdorferi Erp (OspEF-related) lipoproteins.Microbiology147821830PubMedGoogle Scholar
  25. 25.
    Fraser, CM, Casjens, S, Huang, WM, Sutton, GG, Clayton, R, Lathigra, R, White, O, Ketchum, KA, Dodson, R, Hickey, EK, Gwinn, M, Dougherty, B, Tomb, J-F, Fleischmann, RD, Richardson, D, Peterson, J, Kerlavage, AR, Quackenbush, J, Salzberg, S, Hanson, M, van Vugt, R, Palmer, N, Adams, MD, Gocayne, J, Weidmann, J, Utterback, T, Watthey, L, McDonald, L, Artiach, P, Bowman, C, Garland, S, Fujii, C, Cotton, MD, Horst, K, Roberts, K, Hatch, B, Smith, HO, Venter, JC 1997Genomic sequence of a Lyme disease spirochaete, Borreliaburgdorferi.Nature390580586PubMedGoogle Scholar
  26. 26.
    Hefty, PS, Jolliff, SE, Caimano, MJ, Wikel, SK, Radolf, JD, Akins, DR 2001Regulation of OspE-related, OspF-related, and Elp lipoproteins of Borreliaburgdorferi strain 297 by mammalian host-specific signals.Infect Immun6936183627CrossRefPubMedGoogle Scholar
  27. 27.
    Hefty, PS, Brooks, CS, Jett, AM, White, GL, Wikel, SK, Kennedy, RC, Akins, DR 2002aOspE-related, OspF-related, and Elp lipoproteins are immunogenic in baboons experimentally infected with Borreliaburgdorferi and in human Lyme disease patients.J Clin Microbiol4042564265Google Scholar
  28. 28.
    Hefty, PS, Jolliff, SE, Caimano, MJ, Wikel, SK, Akins, DR 2002bChanges in the temporal and spatial patterns of outer surface lipoprotein expression generate population heterogeneity and antigenic diversity in the Lyme disease spirochete, Borreliaburgdorferi.Infect Immun7034683478Google Scholar
  29. 29.
    Hellwage, J, Meri, T, Heikkilä, T, Alitalo, A, Panelius, J, Lahdenne, P, Seppälä, IJT, Meri, S 2001The complement regulatory factor H binds to the surface protein OspE of Borreliaburgdorferi.J Biol Chem27684278435CrossRefPubMedGoogle Scholar
  30. 30.
    Hendrix, RW, Lawrence, JG, Hatfull, GF, Casjens, S 2000The origins and ongoing evolution of viruses.Trends Microbiol8504508CrossRefPubMedGoogle Scholar
  31. 31.
    Jeanmougin, F, Thompson, JD, Gouy, M, Higgins, DG, Gibson, TJ 1998Multiple sequence alignment with Clustal X.Trends Biochem Sci23403405PubMedGoogle Scholar
  32. 32.
    Keirans, JE, Hutcheson, HJ, Durden, LA, Klompen, JSH 1996Ixodes (Ixodes) scapularis (Acari:Ixodidae): Redescription of all active stages, distribution, hosts, geographical variation, and medical and veterinary importance.J Med Entomol33297318PubMedGoogle Scholar
  33. 33.
    Kraiczy, P, Skerka, C, Brade, V, Zipfel, PF 2001aFurther characterization of complement regulator-acquiring surface proteins of Borreliaburgdorferi.Infect Immun6978007809Google Scholar
  34. 34.
    Kraiczy, P, Skerka, C, Kirschfink, M, Brade, V, Zipfel, PF 2001bImmune evasion of Borreliaburgdorferi by acquisition of human complement regulators FHL-1/reconectin and factor H.Eur J Immunol3116741684Google Scholar
  35. 35.
    Kurtenbach, K, Sewell, H-S, Ogden, NH, Randolph, SE, Nuttall, PA 1998Serum complement sensitivity as a key factor in Lyme disease ecology.Infect Immun6612481251PubMedGoogle Scholar
  36. 36.
    Kurtenbach, K, DeMichelis, S, Etti, S, Schäfer, SM, Sewell, H-S, Brade, V, Kraiczy, P 2002aHost association of Borreliaburgdorferi sensu latoThe key role of host complement.Trends Microbiol107479Google Scholar
  37. 37.
    Kurtenbach, K, Schäfer, SM, Sewell, H-S, Peacey, M, Hoodless, A, Nuttall, PA, Randolph, SE 2002bDifferential survival of Lyme borreliosis spirochetes in ticks that feed on birds.Infect Immun7058935895Google Scholar
  38. 38.
    Lam, TT, Nguyen, T-PK, Montgomery, RR, Kantor, FS, Fikrig, E, Flavell, RA 1994Outer surface proteins E and F of Borreliaburgdorferi, the agent of Lyme disease.Infect Immun62290298PubMedGoogle Scholar
  39. 39.
    Livey, I, Gibbs, CP, Schuster, R, Dorner, F 1995Evidence for lateral transfer and recombination in OspC variation in Lyme disease Borrelia.Mol Microbiol18257269PubMedGoogle Scholar
  40. 40.
    Marconi, RT, Sung, SY, Hughes, CAN, Carlyon, JA 1996Molecular and evolutionary analyses of a variable series of genes in Borreliaburgdorferi that are related to ospE and ospF, constitute a gene family, and share a common upstream homology box.J Bacteriol17856155626PubMedGoogle Scholar
  41. 41.
    McDowell, JV, Sung, SY, Price, G, Marconi, RT 2001Demonstration of the genetic stability and temporal expression of select members of the Lyme disease spirochete OspF protein family during infection in mice.Infect Immun6948314838CrossRefPubMedGoogle Scholar
  42. 42.
    Miller, JC, Stevenson, B 2003Immunological and genetic characterization of Borreliaburgdorferi BapA and EppA proteins.Microbiology14911131125CrossRefPubMedGoogle Scholar
  43. 43.
    Miller, JC, Bono, JL, Babb, K, El-Hage, N, Casjens, S, Stevenson, B 2000aA second allele of eppA in Borreliaburgdorferi strain B31 is located on the previously undetected circular plasmid cp9-2.J Bacteriol18262546258Google Scholar
  44. 44.
    Miller, JC, El-Hage, N, Babb, K, Stevenson, B 2000bBorreliaburgdorferi B31 Erp proteins that are dominant immunoblot antigens of animals infected with isolate B31 are recognized by only a subset of human Lyme disease patient sera.J Clin Microbiol3815691574Google Scholar
  45. 45.
    Novick, RP 1987Plasmid incompatibility.Microbiol Rev51381395PubMedGoogle Scholar
  46. 46.
    Palmer, N, Fraser, C, Casjens, S 2000Distribution of twelve linear extrachromosomal DNAs in natural isolates of the Lyme disease spirochetes.J Bacteriol18224762480CrossRefPubMedGoogle Scholar
  47. 47.
    Qiu, W-G, Dykhuizen, DE, Acosta, MS, Luft, BJ 2002Geographic uniformity of the Lyme disease spirochete (Borreliaburgdorferi) and its shared history with tick vector (Ixodesscapularis) in the northeastern United States.Genetics160833849PubMedGoogle Scholar
  48. 48.
    Saint Girons, I, Davidson, BE 1992

    Genome organization of Borreliaburgdorferi.

    Ingilis, JSittowski, JW eds. Lyme disease: Molecular and immunologic approaches.Cold Spring Harbor Laboratory PressCold Spring Harbor, NY111118
    Google Scholar
  49. 49.
    Samuels, DS, Garon, CF 1993Coumermycin A1 inhibits growth and induces relaxation of supercoiled plasmids in Borreliaburgdorferi, the Lyme disease agent.Antimicrob Agents Chemother374650PubMedGoogle Scholar
  50. 50.
    Schwan, TG, Burgdorfer, W, Schrumpf, ME, Karstens, RH 1988The urinary bladder, a consistent source of Borreliaburgdorferi in experimentally infected white-footed mice (Peromyscusleucopus).J Clin Microbiol26893895PubMedGoogle Scholar
  51. 51.
    Schwan, TG, Schrumpf, ME, Karstens, RH, Clover, JR, Wong, J, Daugherty, M, Struthers, M, Rosa, PA 1993Distribution and molecular analysis of Lyme disease spirochetes, Borreliaburgdorferi, isolated from ticks throughout California.J Clin Microbiol3130963108PubMedGoogle Scholar
  52. 52.
    Simpson, WJ, Garon, CF, Schwan, TG 1990Borreliaburgdorferi contains repeated DNA sequences that are species specific and plasmid associated.Infect Immun58847853PubMedGoogle Scholar
  53. 53.
    Steere, AC, Grodzicki, RL, Kornblatt, AN, Craft, JE, Barbour, AG, Burgdorfer, W, Schmid, GP, Johnson, E, Malawista, SE 1983The spirochetal etiology of Lyme disease.N Engl J Med308733740PubMedGoogle Scholar
  54. 54.
    Stevenson, B 2002Borreliaburgdorferierp (ospE-related) gene sequences remain stable during mammalian infection.Infect Immun7053075311CrossRefPubMedGoogle Scholar
  55. 55.
    Stevenson, B, Barthold, SW 1994Expression and sequence of outer surface protein C among North American isolates of Borrelia burgdorferi.FEMS Microbiol Lett124367372CrossRefPubMedGoogle Scholar
  56. 56.
    Stevenson, B, Schwan, TG, Rosa, PA 1995Temperature-related differential expression of antigens in the Lyme disease spirochete, Borreliaburgdorferi.Infect Immun6345354539PubMedGoogle Scholar
  57. 57.
    Stevenson, B, Tilly, K, Rosa, PA 1996A family of genes located on four separate 32-kilobase circular plasmids in Borreliaburgdorferi B31.J Bacteriol17835083516PubMedGoogle Scholar
  58. 58.
    Stevenson, B, Casjens, S, van Vugt, R, Porcella, SF, Tilly, K, Bono, JL, Rosa, P 1997Characterization of cp18, a naturally truncated member of the cp32 family of Borreliaburgdorferi plasmids.J Bacteriol17942854291PubMedGoogle Scholar
  59. 59.
    Stevenson, B, Bono, JL, Schwan, TG, Rosa, P 1998aBorreliaburgdorferi Erp proteins are immunogenic in mammals infected by tick bite, and their synthesis is inducible in cultured bacteria.Infect Immun6626482654Google Scholar
  60. 60.
    Stevenson, B, Casjens, S, Rosa, P 1998bEvidence of past recombination events among the genes encoding the Erp antigens of Borreliaburgdorferi.Microbiology14418691879Google Scholar
  61. 61.
    Stevenson, B, Porcella, SF, Oie, KL, Fitzpatrick, CA, Raffel, SJ, Lubke, L, Schrumpf, ME, Schwan, TG 2000The relapsing fever spirochete Borreliahermsii contains multiple, antigen-encoding circular plasmids that are homologous to the cp32 plasmids of Lyme disease spirochetes.Infect Immun6839003908CrossRefPubMedGoogle Scholar
  62. 62.
    Stevenson, B, Zückert, WR, Akins, DR 2001

    Repetition, conservation, and variation: the multiple cp32 plasmids of Borrelia species.

    Saier, MHGarcía-Lara, J eds. The spirochetes: Molecular and cellular biology.Horizon PressOxford87100
    Google Scholar
  63. 63.
    Stevenson, B, El-Hage, N, Hines, MA, Miller, JC, Babb, K 2002Differential binding of host complement inhibitor factor H by Borreliaburgdorferi Erp surface proteins: A possible mechanism underlying the expansive host range of Lyme disease spirochetes.Infect Immun70491497CrossRefPubMedGoogle Scholar
  64. 64.
    Suk, K, Das, S, Sun, W, Jwang, B, Barthold, SW, Flavell, RA, Fikrig, E 1995Borreliaburgdorferi genes selectively expressed in the infected host.Proc Natl Acad Sci USA9242694273PubMedGoogle Scholar
  65. 65.
    Sung, SY, McDowell, JV, Carlyon, JA, Marconi, RT 2000Mutation and recombination in the upstream homology box-flanked ospg-related genes of the Lyme disease spirochetes result in the development of new antigenic variants during infection.Infect Immun6813191327CrossRefPubMedGoogle Scholar
  66. 66.
    Swofford, DL 2000PAUP*, phylogenetic analysis using parsimony (*and other methods), version 4.Sinauer AssociatesSunderland, MAGoogle Scholar
  67. 67.
    Wallich, R, Brenner, C, Kramer, MD, Simon, MM 1995Molecular cloning and immunological characterization of a novel linear-plasmid-encoded gene, pG, of Borreliaburgdorferi expressed only in vivo.Infect Immun6333273335PubMedGoogle Scholar
  68. 68.
    Wang, G, Ojaimi, C, Iyer, R, Saksenberg, V, McClain, SA, Wormser, GP, Schwartz, IA 2001Impact of genotypic variation of Borreliaburgdorferi sensu stricto on kinetics of dissemination and severity of disease in C3H/HeJ mice.Infect Immun6943034312CrossRefPubMedGoogle Scholar
  69. 69.
    Wang, I-N, Dykhuizen, DE, Qiu, W, Dunn, JJ, Bosler, EM, Luft, BJ 1999Genetic diversity of ospC in a local population of Borreliaburgdorferisensustricto.Genetics1511530PubMedGoogle Scholar
  70. 70.
    Zückert, WR, Meyer, J 1996Circular and linear plasmids of Lyme disease spirochetes have extensive homology: Characterization of a repeated DNA element.J Bacteriol17822872298PubMedGoogle Scholar
  71. 71.
    Zückert, WR, Filipuzzi-Jenny, E, Meister-Turner, J, Stålhammar-Carlemalm, M, Meyer, J 1994

    Repeated DNA sequences on circular and jinear plasmids of Borreliaburgdorferi sensu lato.

    Axford, JSRees, DHE eds. Lyme borreliosis.Plenum PressNew York253260
    Google Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  1. 1.Department of MicrobiologyImmunology, and Molecular Genetics, MS415 Chandler Medical Center, University of Kentucky College of Medicine, Lexington, KY 40536-0298USA

Personalised recommendations