Journal of Molecular Evolution

, Volume 57, Issue 3, pp 271–281

Five Hundred Sixty-Five Triples of Chicken, Human, and Mouse Candidate Orthologs

  • Ming Ouyang
  • John Case
  • Vijaya Tirunagaru
  • Joan Burnside


The Human Genome Project has provided abundant gene sequence information on human and important model organisms. The chicken is well positioned from an evolutionary standpoint to serve as a link between higher and lower organisms, particularly mammals, and amphibia and fish. In this study we used stringent criteria to select 565 triples of chicken, human, and mouse candidate orthologs. We analyze the sequences with respect to nucleotide and amino acid similarities. This analysis also allows measurement of evolutionary distances of different proteins. We found that chicken-human and chicken-mouse sequence identities are highly correlated; similarly for chicken-human and chicken-mouse evolutionary distances. With chicken as the out-group, we found that mouse has a higher substitution rate than human, supporting the generation-time effect hypothesis. We also described the transversion bias, which is the preference for some transversions than others in nucleotide substitutions. We demonstrated that there are statistically significant properties in the differences of orthologous sequences. The differential patterns, in combination with sequence similarity analysis, may lead to the identification of genes that are very divergent from the mammalian orthologs.


Comparative genomics Ortholog Alignment Evolutionary distance Transversion bias Generation-time effect 


  1. 1.
    Altschul, S, Gish, W, Miller, W, Myers, E, Lipman, D 1990Basic local alignment search tool.J Mol Biol215403104CrossRefPubMedGoogle Scholar
  2. 2.
    Altschul, S, Madden, T, Schaffer, A, Zhang, J, Zhang, Z, Miller, W, Lipman, D 1997Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.Nucleic Acids Res2533893402PubMedGoogle Scholar
  3. 3.
    Britten, R 1986Rates of DNA sequence evolution differ between taxonomic groups.Science23113931398PubMedGoogle Scholar
  4. 4.
    Dayhoff, M, Scheartz, R, Orcutt, B 1978

    A model of evolutionary change in proteins.

    Dayhoff, M eds. Atlas of protein sequence and structure.National Biomedical Research Foundation345352
    Google Scholar
  5. 5.
    Flint, J, Tufarelli, C, Peden, J, Clark, K, Daniels, R, Hardison, R, Miller, W, Philipsen, S, Tan-Un, K, McMorrow, T, Frampton, J, Alter, B, Frischauf, A, Higgs, D 2001Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster.Hum Mol Genet10371382CrossRefPubMedGoogle Scholar
  6. 6.
    Goldman, N, Yang, Z 1994A codon-based model of nucleotide substitution for protein-coding DNA sequences.Mol Biol Evol11725736PubMedGoogle Scholar
  7. 7.
    Gotoh, O 1982An improved algorithm for matching biological sequences.J Mol Biol162705708PubMedGoogle Scholar
  8. 8.
    Gottgens, B, Barton, L, Gilbert, J, Bench, A, Sanchez, M, Bahn, S, Mistry, S, Grafham, D, McMurray, A, Vaudin, M, Amaya, E, Bentley, D, Green, A, Sinclair, A 2000Analysis of vertebrate SCL loci identifies conserved enhancers.Nat Biotechnol18181186CrossRefPubMedGoogle Scholar
  9. 9.
    Gottgens, B, Barton, L, Chapman, M, Sinclair, A, Knudsen, B, Grafham, D, Gilbert, J, Rogers, J, Bentley, D, Green, A 2002Transcriptional regulation of the stem cell leukemia gene (SCL)—Comparative analysis of five vertebrate SCL loci.Genome Res12749759CrossRefPubMedGoogle Scholar
  10. 10.
    Groenen, M, Cheng, H, Bumstead, N, Benkel, B, Briles, W, Burke, T, Burt, D, Crittenden, L, Dodgson, J, Hillel, J, Lamont, S, de Leon A, AP, Soller, M, Takahashi, H, Vignal, A 2000A consensus linkage map of the chicken genome.Genome Res10137147PubMedGoogle Scholar
  11. 11.
    Gu, X, Li, W 1992Higher rates of amino acid substitution in rodents than in humans.Mol Phylogenet Evol1211421PubMedGoogle Scholar
  12. 12.
    Henikoff, S, Henikoff, J 1992Amino acid substitution matrices from protein blocks.Proc Natl Acad Sci USA891091510919Google Scholar
  13. 13.
    Higgins, D, Thompson, J, Gibson, T 1996Using CLUSTAL for multiple sequence alignments.Methods Enzymol266383402PubMedGoogle Scholar
  14. 14.
    Ina, Y 1995New methods for estimating the numbers of synonymous and nonsynonymous substitutions.J Mol Evol40190226PubMedGoogle Scholar
  15. 15.
    Ina, Y 1998Estimation of the transition/transversion ratio.J Mol Evol46521533PubMedGoogle Scholar
  16. 16.
    Kaufman, J, Milne, S, Gobel, T, Walker, B, Jacob, J, Auffray, C, Zoorob, R, Beck, S 1999The chicken B locus is a minimal essential major histocompatibility complex.Nature401923925CrossRefPubMedGoogle Scholar
  17. 17.
    Kumar, S, Gadagkar, S 2001Disparity index: A simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences.Genetics15813211327PubMedGoogle Scholar
  18. 18.
    Kumar, S, Subramanian, S 2002Mutation rates in mammalian genomes.Proc Natl Acad Sci USA99803880CrossRefGoogle Scholar
  19. 19.
    Kumar, S, Tamura, K, Jakobsen, I, Nei, M 2001MEGA2: Molecular evolutionary genetics analysis software.Bioinformatics1712441245PubMedGoogle Scholar
  20. 20.
    Lee, Y, Sultana, R, Pertea, G, Cho, J, Karamycheva, S, Tsai, J, Parvizi, B, Cheung, F, Antonescu, V, White, J, Holt, I, Liang, F, Quackenbush, J 2002Cross-referencing eukaryotic genomes: TIGR Orthologous Gene Alignments (TOGA).Genome Res12493502PubMedGoogle Scholar
  21. 21.
    Li, W 1993Unbiased estimation of the rates of synonymous and nonsynonymous substitution.J Mol Evol369699PubMedGoogle Scholar
  22. 22.
    Li, W 1997Molecular evolution.Sinauer AssociatesSunderland, MAGoogle Scholar
  23. 23.
    Li, W, Ellsworth, D, Krushkal, J, Chang, B, Hewett-Emmett, D 1996Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis.Mol Phylogenet Evol5182718PubMedGoogle Scholar
  24. 24.
    Lillehoj, H, Min, W, Choi, K, Babu, U, Burnside, J, Miyamoto, T, Rosenthal, B, Lillehoj, E 2001Molecular, cellular, and functional characterization of chicken cytokines homologous to mammalian IL-15 and IL-2.Vet Immunol Immunopathol82229244CrossRefPubMedGoogle Scholar
  25. 25.
    Makalowski, W, Boguski, M 1998Evolutionary parameters of the transcribed mammalian genome: An analysis of 2,820 orthologous rodent and human sequences.Proc Natl Acad Sci USA9594071294CrossRefPubMedGoogle Scholar
  26. 26.
    Maridor, G, Park, W, Krek, W, Nigg, E 1991Casein kinase II. cDNA sequences, developmental expression, and tissue distribution of mRNAs for alpha, alpha′, and beta subunits of the chicken enzyme.J Biol Chem26623622368PubMedGoogle Scholar
  27. 27.
    Mushegian, A, Garey, J, Martin, J, Liu, L 1998Large-scale taxonomic profiling of eukaryotic model organisms: A comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes.Genome Res8590598PubMedGoogle Scholar
  28. 28.
    Needleman, S, Wunsch, C 1970A general method applicable to the search for similarities in the amino acid sequence of two proteins.J Mol Biol48443453PubMedGoogle Scholar
  29. 29.
    Ouyang, M, Case, J, Burnside, J 2001

    Divide and conquer machine learning for a genomics analogy problem (progress report).

    Jantke, KShinohara, A eds. Fourth International Conference on Discovery Science. Vol 2226Springer-VerlagWashington, DC290303
    Google Scholar
  30. 30.
    Pamilo, P, Bianchi, N 1993Evolution of the Zfx and Zfy genes: Rates and interdependence between the genes.Mol Biol Evol10271281Google Scholar
  31. 31.
    Sundick, R, Gill-Dixon, C 1997A cloned chicken lymphokine homologous to both mammalian IL-2 and IL-15.J Immunol159720572PubMedGoogle Scholar
  32. 32.
    Tregaskes, C, Kong, F, Paramithiotis, E, Chen, C, Ratcliffe, M, Davison, T, Young, J 1995Identification and analysis of the expression of CD8 alpha beta and CD8 alpha alpha isoforms in chickens reveals a major TCR-gamma delta CD8 alpha beta subset of intestinal intraepithelial lymphocytes.J Immunol15444854494PubMedGoogle Scholar
  33. 33.
    Zuckerkandl, E, Pauling, L 1965

    Evolutionary divergence and convergence in proteins.

    Bryson, VVogel, H eds. Evolving genes and proteins.Academic PressNew York97166
    Google Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  • Ming Ouyang
    • 1
  • John Case
    • 2
  • Vijaya Tirunagaru
    • 3
  • Joan Burnside
    • 4
  1. 1.Informatics InstituteUniversity of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854USA
  2. 2.Department of Computer and Information SciencesUniversity of Delaware, Newark, DE 19716USA
  3. 3.Astrazeneca Pharmaceuticals LP, 1800 Concord Pike, Wilmington, DE 19850USA
  4. 4.Delaware Biotechnology InstituteUniversity of Delaware, Newark, DE 19716USA

Personalised recommendations