Journal of Molecular Evolution

, Volume 57, Issue 3, pp 255–260

Structure-Based Phylogenies of the Serine β-Lactamases

Article

Abstract

The serine β-lactamases present a special problem for phylogenetics because they have diverged so much that they fall into three classes that share no detectable sequence homology among themselves. Here we offer a solution to the problem in the form of two phylogenies that are based on a protein structure alignment. In the first, structural alignments were used as a guide for aligning amino acid sequences and in the second, the average root mean square distances between the alpha carbons of the proteins were used to create a pairwise distance matrix from which a neighbor-joining phylogeny was created. From those phylogenies, we show that the Class A and Class D β-lactamases are sister taxa and that the divergence of the Class C β-lactamases predated the divergence of the Class A and Class D β-lactamases.

Keywords

Protein structure Bayesian phylogeny β-Lactamases 

References

  1. 1.
    Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ 1990Basic local alignment search tool.J Mol Biol215403410CrossRefPubMedGoogle Scholar
  2. 2.
    Altschul, SF, Madden, TL, Schäffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ 1997Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.Nucleic Acids Res2533893402PubMedGoogle Scholar
  3. 3.
    Ambler, RP 1980The structure of beta-lactamases.Philos Trans R Soc Lond B Biol Sci289321331Google Scholar
  4. 4.
    Barlow, M, Hall, BG 2002aOrigin and evolution of the AmpC β-lactamases of Citrobacter freundii.Antimicrob Agents Chemother4611901198Google Scholar
  5. 5.
    Barlow, M, Hall, BG 2002bPhylogenetic analysis shows that the OXA β-lactamase genes have been on plasmids for millions of years.J Mol Evol55314321Google Scholar
  6. 6.
    Breitling, R, Laubner, D, Adamski, J 2001Structure-based phylogenetic analysis of short-chain alcohol dehydrogenases and reclassification of the 17beta-hydroxysteroid dehydrogenase family.Mol Biol Evol1821542161PubMedGoogle Scholar
  7. 7.
    Brown, JR, Douady, CJ, Italia, MJ, Marshall, WE, Stanhope, MJ 2001Universal trees based on large combined protein sequence data sets.Nat Genet28281285CrossRefPubMedGoogle Scholar
  8. 8.
    Bush, K, Jacoby, GA, Medeiros, AA 1995A functional classification scheme for beta-lactamases and its correlation with molecular structure.Antimicrob Agents Chemother3912111233PubMedGoogle Scholar
  9. 9.
    Caetano-Anolles, G 2002Tracing the evolution of RNA structure in ribosomes.Nucleic Acids Res3025752587CrossRefPubMedGoogle Scholar
  10. 10.
    Carattoli, A 2001Importance of integrons in the diffusion of resistance.Vet Res32243259CrossRefPubMedGoogle Scholar
  11. 11.
    Feng, D-F, Cho, G, Doolittle, RF 1997Determining the divergence times with a protein clock: Update and reevaluation.Proc Natl Acad Sci USA941302813033CrossRefPubMedGoogle Scholar
  12. 12.
    Galleni, M, Lamotte-Brasseur, J, Rossolini, GM, Spencer, J, Dideberg, O, Frere, JM 2001Standard numbering scheme for class B beta-lactamases.Antimicrob Agents Chemother45660663CrossRefPubMedGoogle Scholar
  13. 13.
    Hall, BG 2001Phylogenetic trees made easy: A how-to manual for molecular biologists.Sinauer AssociatesSunderland, MAGoogle Scholar
  14. 14.
    Hall, BG, Salipante, S, Barlow, M 2003The metallo-β-lactamases fall into two distinct phylogenetic groups.J Mol Evol57249254PubMedGoogle Scholar
  15. 15.
    Hannecart-Pokorni, E, Depuydt, F, de wit, L, van Bossuyt, E, Content, J, Vanhoof, R 1997Characterization of the 6′-N-aminoglycoside acetyltransferase gene aac(6′)-Im [corrected] associated with a sulI-type integron.Antimicrob Agents Chemother41314318Google Scholar
  16. 16.
    Huelsenbeck, JP, Ronquist, F 2001MrBayes: Bayesian inference of phylogeny.Bioinformatics17754755CrossRefPubMedGoogle Scholar
  17. 17.
    Jaurin, B, Grundstrom, T 1981AmpC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type.Proc Natl Acad Sci USA7848974901PubMedGoogle Scholar
  18. 18.
    Johnson, MS, Sutcliffe, MJ, Blundell, TL 1990Molecular anatomy: Phyletic relationships derived from three-dimensional structures of proteins.J Mol Evol304359PubMedGoogle Scholar
  19. 19.
    Koonin, EV, Makarova, KS, Aravind, L 2001Horizontal gene transfer in prokaryotes: Quantification and classification.Annu Rev Microbiol55709742CrossRefPubMedGoogle Scholar
  20. 20.
    Mau, B, Newton, M 1997Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo.J Comput Graph Stat6122131Google Scholar
  21. 21.
    Mau, B, Newton, M, Larget, B 1999Bayesian phylogenetic inference via Markov chain Monte Carlo methods.Biometrics55112PubMedGoogle Scholar
  22. 22.
    Medeiros, AA 1997Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics.Clin Infect Dis24S19S45PubMedGoogle Scholar
  23. 23.
    Ochman, H, Wilson, AC 1987Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes.J Mol Evol267486PubMedGoogle Scholar
  24. 24.
    Ogawara, H 1993Phylogenetic tree and sequence similarity of beta-lactamases.Mol Phylogenet Evol297111CrossRefPubMedGoogle Scholar
  25. 25.
    Ouellette, M, Bissonnette, L, Roy, PH 1987Precise insertion of antibiotic resistance determinants into Tn21-like transposons: Nucleotide sequence of the OXA-1 beta-lactamase gene.Proc Natl Acad Sci USA8473787382PubMedGoogle Scholar
  26. 26.
    Ragan, MA 2001Detection of lateral gene transfer among microbial genomes.Curr Opin Genet Dev11620626CrossRefPubMedGoogle Scholar
  27. 27.
    Rannala, B, Yang, ZH 1996Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference.J Mol Evol43304311PubMedGoogle Scholar
  28. 28.
    Rasmussen, BA, Bush, K 1997Carbapenem-hydrolyzing beta-lactamases.Antimicrob Agents Chemother41223232PubMedGoogle Scholar
  29. 29.
    Rossolini, GM, Condemi, MA, Pantanella, F, Docquier, JD, Amicosante, G, Thaller, MC 2001Metallo-beta-lactamase producers in environmental microbiota: New molecular class B enzyme in Janthinobacterium lividum.Antimicrob Agents Chemother45837844CrossRefPubMedGoogle Scholar
  30. 30.
    Saitou, N, Nei, M 1987The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol Biol Evol4406425PubMedGoogle Scholar
  31. 31.
    Salipante, SJ, Hall, BG 2003Determining the limits of the evolutionary potential of an antibiotic resistance gene.Mol Biol Evol20653659CrossRefPubMedGoogle Scholar
  32. 32.
    Shaw, KJ, Rather, PN, Sabatelli, FJ,  et al. 1992Characterization of the chromosomal aac(6′)-Ic gene from Serratia marcescens.Antimicrob Agents Chemother3614471455PubMedGoogle Scholar
  33. 33.
    Shaw, KJ, Rather, PN, Hare, RS, Miller, GH 1993Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes.Microbiol Rev57138163PubMedGoogle Scholar
  34. 34.
    Swofford, DL 2000PAUP*. Phylogenetic analysis using parsimony (*and other methods).Sinauer AssociatesSunderland, MAGoogle Scholar
  35. 35.
    Tatusova, TA, Madden, TL 1999BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences.FEMS Microbiol Lett174247250PubMedGoogle Scholar
  36. 36.
    Wu, HY, Miller, GH, Blanco, MG, Hare, RS, Shaw, KJ 1997Cloning and characterization of an aminoglycoside 6′-N-acetyltransferase gene from Citrobacter freundii which confers an altered resistance profile.Antimicrob Agents Chemother4124392447PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  1. 1.Biology Department, Hutchison HallUniversity of Rochester, Rochester, NY 14627-0211USA

Personalised recommendations