Advertisement

Journal of Molecular Evolution

, Volume 57, Issue 2, pp 212–221 | Cite as

Widespread Adaptive Evolution in the Human Immunodeficiency Virus Type 1 Genome

  • Wa Yang
  • Joseph P. Bielawski
  • Ziheng Yang
Article

Abstract

We investigated variable selective pressures among amino acid sites in HIV-1 genes. Selective pressure at the amino acid level was measured by using the nonsynonymous/synonymous substitution rate ratio (ω = d N/d S). To identify amino acid sites under positive selection with ω > 1, we applied maximum likelihood models that allow variable ω ratios among sites to analyze genomic sequences of 26 HIV-1 lineages including subtypes A, B, and C. Likelihood ratio tests detected sites under positive selection in each of the major genes in the genome: env, gag, pol, vif, and vpr. Positive selection was also detected in nef, tat, and vpu, although those genes are very small. The majority of positive selection sites is located in gp160. Positive selection was not detected if ω was estimated as an average across all sites, indicating the lack of power of the averaging approach. Candidate positive selection sites were mapped onto the available protein tertiary structures and immunogenic epitopes. We measured the physiochemical properties of amino acids and found that those at positive selection sites were more diverse than those at variable sites. Furthermore, amino acid residues at exposed positive selection sites were more physiochemically diverse than at buried positive selection sites. Our results demonstrate genomewide diversifying selection acting on the HIV-1.

Keywords

HIV-1 Positive selection Physiochemical properties Epitopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alff-Steinberger, C 1969The genetic code and error transmission.Proc Natl Acad Sci USA64584591PubMedGoogle Scholar
  2. 2.
    Allen, TM, O’Connor, DH, Jing, P,  et al. 2000Tat-specific cytotoxic T lymphocytes selected for SIV escape variants during resolution of primary viraemia.Nature407386390CrossRefPubMedGoogle Scholar
  3. 3.
    Altfeld, M, Rosenberg, ES, Shankarappa, R,  et al. 2001Cellular immune responses and viral diversity in individuals treated during acute and early HIV-1 infection.J Exp Med193169180CrossRefPubMedGoogle Scholar
  4. 4.
    Anisimova, M, Bielawski, JP, Yang, Z 2001The accuracy and power of likelihood ratio tests to detect positive selection at amino acid sites.Mol Biol Evol1815851592PubMedGoogle Scholar
  5. 5.
    Anisimova, M, Bielawski, JP, Yang, Z 2002Accuracy and power of Bayesian prediction of amino acid sites under positive selection.Mol Biol Evol19950958PubMedGoogle Scholar
  6. 6.
    Beaumont, T, van Nuenen, A, Broersen, S, Blattner, WA, Lukashov, VV, Schuitemaker, H 2001Reversal of human immunodeficiency virus type 1 IIIB to a neutralization-resistant phenotype in an accidentally infected laboratory worker with a progressive clinical course.J Virol7522462252CrossRefPubMedGoogle Scholar
  7. 7.
    Bondada, S, Chelvarajan, RL 1999B lymphocytes.Encyclopedia of science 2001.Nature Publishing GroupLondonGoogle Scholar
  8. 8.
    Brander, C, Goulder, PJR 2000The evolving field of HIV CTL epitope mapping: New approaches to the identification of novel epitopes.Korber, BBrander, CHaynes, BFKoup, RKuiken, CMoure, JPWalker, BDWatkins, DI eds. HIV molecular immunology 2001.Los Alamos National Laboratory, Theoretical Biology and BiophysicsLos Alamos, NMGoogle Scholar
  9. 9.
    Calarota, S, Jansson, M, Levi, M, Broliden, K, Libonatti, O, Wigzell, H, Wahren, B 1996Immunodominant glycoprotein 41 epitope identified by seroreactivity in HIV type 1-infected individuals.AIDS Res Hum Retroviruses12705713PubMedGoogle Scholar
  10. 10.
    Crandall, KA, Kelsey, CR, Imamichi, H, Lane, HC, Salzman, NP 1999Parallel evolution of drug resistance in HIV: Failure of nonsynonymous/synonymous substitution rate ratio to detect selection.Mol Biol Evol16372382PubMedGoogle Scholar
  11. 11.
    Domingo, E 1997RNA virus mutations and fitness for survival.Annu Rev Microbiol51151178Google Scholar
  12. 12.
    Evans, DT, O’Connor, DH, Jing, PC,  et al. 1999Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef.Nature Med512701276CrossRefPubMedGoogle Scholar
  13. 13.
    Eyre-Walker, A, Keightley, PD 1999High genomic deleterious mutation rates in hominids.Nature397344347CrossRefPubMedGoogle Scholar
  14. 14.
    Fares, MA, Moya, A, Escarmis, C, Baranowski, E, Domingo, E, Barrio, E 2001Evidence for positive selection in the capsid protein-coding region of the foot-and-mouth disease virus (FMDV) subjected to experimental passage regimens.Mol Biol Evol181021PubMedGoogle Scholar
  15. 15.
    Fomsgaard, A 1999HIV-1 DNA vaccines.Immunol Lett65127131CrossRefPubMedGoogle Scholar
  16. 16.
    Fu, YX 2001Estimating mutation rate and generation time from longitudinal samples of DNA sequences.Mol Biol Evol18620626PubMedGoogle Scholar
  17. 17.
    Gojobori, T, Moriyama, EN, Kimura, M 1990Molecular clock of viral evolution and the neutral theory.Proc Natl Acad Sci USA871001510018PubMedGoogle Scholar
  18. 18.
    Goldman, N, Yang, Z 1994A codon based model of nucleotide substitution for protein coding DNA sequences.Mol Biol Evol11725736PubMedGoogle Scholar
  19. 19.
    Gotch, FM 1998T lymphocytes: Cytotoxic.Encyclopedia of science 2001.Nature Publishing GroupLondonGoogle Scholar
  20. 20.
    Grantham, R 1974Amino acid difference formula to help explain protein evolution.Science185862864PubMedGoogle Scholar
  21. 21.
    Harcourt, GC, Garrard, S, Davenport, MP, Edwards, A, Philips, RE 1998HIV-1 variation diminishes CD4 T lymphocyte recognition.J Exp Med18817851793CrossRefPubMedGoogle Scholar
  22. 22.
    Hasegawa, M, Kishino, H, Yano, T 1985Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.J Mol Evol22160174PubMedGoogle Scholar
  23. 23.
    Haydon, DT, Lea, S, Fry, L, Knowles, N, Samuel, AR, Stuart, D, Woolhouse, MEJ 1998Characterising sequence variation in the VP1 capsid proteins of foot and mouth disease virus (serotype 0) with respect to virion structure.J Mol Evol46465475PubMedGoogle Scholar
  24. 24.
    Haydon, DT, Bastos, AD, Knowles, NJ, Samuel, AR 2001Evidence of positive selection in foot-and-mouth disease virus capsid genes from field isolates.Genetics157715PubMedGoogle Scholar
  25. 25.
    Hughes, AL 1992Positive selection and interallelic recombination at the Merozoite surface antigen-1 (MSA-1) locus of Plasmodium falciparum.Mol Biol Evol9381393PubMedGoogle Scholar
  26. 26.
    Hughes, AL, Ota, T, Nei, M 1990Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules.Mol Biol Evol7515524PubMedGoogle Scholar
  27. 27.
    Igarashi, T, Kuwata, T, Takehisa, J, Ibuki, K, Shibata, R, Mukai, R, Komatsu, T, Adachi, A, Ido, E, Hayami, M 1996Genomic and biological alteration of a human immunodeficiency virus type 1 (HIV-1)-simian immunodeficiency virus strain mac chimera, with HIV-1 Env, recovered from a long-term carrier monkey.J Gen Virol7716491658PubMedGoogle Scholar
  28. 28.
    Jetzt, AE, Yu, H, Klarmann, GJ, Ron, Y, Preston, BD, Dougherty, JP 2000High rate of recombination throughout the human immunodeficiency virus type 1 genome.J Virol7412341240CrossRefPubMedGoogle Scholar
  29. 29.
    Korber, BBrander, CHaynes, BKoup, RKuiken, CMoore, JPWalker, BDWatkins, DI eds. 2000HIV molecular immunology 2000.Los Alamos National Laboratory, Theoretical Biology and BiophysicsLos Alamos, NMGoogle Scholar
  30. 30.
    Kyte, J, Doolittle, RF 1982A simple method for displaying the hydropathic character of a protein.J Mol Biol157105132PubMedGoogle Scholar
  31. 31.
    Langedijk, JPM, Zwart, G, Goudsmit, J, Meloen, RH 1995Fine specificity of antibody recognition may predict amino acid substitution in the 3rd variable region of GP120 during HIV type-1 infection.AIDS Res Hum Retroviruses1111531162PubMedGoogle Scholar
  32. 32.
    Leigh Brown, AJ 1997Analysis of HIV-1 env gene reveals evidence for a low effective number in the viral population.Proc Natl Acad Sci USA9418621865CrossRefPubMedGoogle Scholar
  33. 33.
    Lukashov, VV, Goudsmit, J 1997Evolution of the human immunodeficiency virus type 1 subtype-specific V3 domain is confined to a sequence space with a fixed distance to the subtype consensus.J Virol7163326338PubMedGoogle Scholar
  34. 34.
    McClellan, DA, McCracken, KG 2001Estimating the influence of selection on the variable amino acid sites of the cytochrome b protein functional domains.Mol Biol Evol18917925PubMedGoogle Scholar
  35. 35.
    McLain, L, Brown, JL, Cheung, L, Reading, SA, Parry, C, Jones, TD, Cleveland, SM, Dimmock, NJ 2001Different effects of a single amino acid substitution on three adjacent epitopes in the gp41 C-terminal tail of a neutralizing antibody escape mutant of human immunodeficiency virus type 1.Arch Virol146157166CrossRefPubMedGoogle Scholar
  36. 36.
    Metzgar, D, Wills, C 2000Evolutionary changes in mutation rates and spectra and their influence on the adaptation of pathogens.Microbes Infect215131522CrossRefPubMedGoogle Scholar
  37. 37.
    Nicholas, KB, Nicholas, HB, Deerfield, DW 1997GeneDoc: Analysis and visualization of genetic variation. Version 2.5.EMBnew News414Google Scholar
  38. 38.
    Nielsen, R, Yang, Z 1998Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene.Genetics148929936PubMedGoogle Scholar
  39. 39.
    Norris, PJ, Sumaroka, M, Brander, C, Moffett, HF, Boswell, SL, Nguyen, T, Sykulev, Y, Walker, BD, Rosenberg, ES 2001Multiple effector functions mediated by human immunodeficiency virus-specific CD4(+) T-cell clones.J Virol7597719779PubMedGoogle Scholar
  40. 40.
    Peek, AS, Souza, V, Eguiarte, LE, Gaut, BS 2001The interaction of protein structure, selection, and recombination on the evolution of the type-1 fimbrial major subunit (fimA) from Escherichia coli.J Mol Evol52193204PubMedGoogle Scholar
  41. 41.
    Phillips, RE, Harcourt, GC, Price, DA 2001CD4+ T cells: The great escape.Nature Med7777778CrossRefPubMedGoogle Scholar
  42. 42.
    Plikat, U, Nieselt-Struwe, K, Meyerhans, A 1997Genetic drift can dominate short-term human immunodeficiency virus type 1 nef quasispecies evolution in vivo.J Virol7142334240PubMedGoogle Scholar
  43. 43.
    Robertson, DL, Anderson, JP, Bradac, JA 1999HIV-1 nomenclature proposal.Kuiken, CLFoley, BHahn, BKorber, BMcCutchan, FMarx, PAMellors, JWMullins, JISodroski, JWolinksy, S eds. Human retroviruses and AIDS 1999.Theoretical Biology and Biophysics Group, Los Alamos National LaboratoryLos Alamos, NM492505Google Scholar
  44. 44.
    Rosenberg, ES, Altfeld, M, Poon, SH, Phillips, MN, Wilkes, BM, Eldridge, RL, Robbins, GK, D’Aquila, RT, Goulder, PJR, Walker, BD,  et al. 2000Immune control of HIV-1 after early treatment of acute infection.Nature407523526PubMedGoogle Scholar
  45. 45.
    Ross, HA, Rodrigo, AG 2002Immune-mediated positive selection drives human immunodeficiency virus type 1 molecular variation and predicts disease duration.J Virol761171511720CrossRefPubMedGoogle Scholar
  46. 46.
    Seibert, SA, Howell, CY, Hughes, MK, Hughes, AL 1995Natural selection on the gag, pol and env genes of human immunodeficiency virus 1 (HIV-1).Mol Biol Evol12803813PubMedGoogle Scholar
  47. 47.
    Siliciano, RF 2001Acquired immune deficiency syndrome (AIDS).Encyclopedia of life science 2001.Nature Publishing GroupLondonGoogle Scholar
  48. 48.
    Sharp, PM 1997In search of molecular Darwinism.Nature385111112CrossRefPubMedGoogle Scholar
  49. 49.
    Swanson, WJ, Yang, Z, Wolfner, MF, Aquadro, CF 2001Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals.Proc Natl Acad Sci USA9825092514CrossRefPubMedGoogle Scholar
  50. 50.
    Swofford, DL 2000PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4.Sinauer AssociatesSunderland, MAGoogle Scholar
  51. 51.
    Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res2448764882CrossRefGoogle Scholar
  52. 52.
    Walker, BD, Goulder, PJR 2000AIDS—Escape from the immune system.Nature407313314CrossRefPubMedGoogle Scholar
  53. 53.
    Walther, D 1997WEBMOL, a Java based PDB viewer.Trends Biochem Sci22274275CrossRefPubMedGoogle Scholar
  54. 54.
    Williams, EJB, Pal, C, Hurst, LD 2000The molecular evolution of signal peptides.Gene253313322CrossRefPubMedGoogle Scholar
  55. 55.
    Xia, X 2000Data analysis in molecular biology and evolution.Kluwer AcademicDordrechtGoogle Scholar
  56. 56.
    Yamaguchi-Kabata, Y, Gojobori, T 2000Reevaluation of amino acid variability of the HIV-1 gp120 envelop glycoprotein and prediction of new discontinuous epitopes.J Virol7443354350CrossRefPubMedGoogle Scholar
  57. 57.
    Yang, Z 2000Phylogenetic analysis by maximum likelihood (PAML). Version 3.University College LondonLondonGoogle Scholar
  58. 58.
    Yang Z (2001) Maximum likelihood analysis of adaptive evolution in HIV-1 gp120 env gene. Pacific Symp Biocomput pp 226–237Google Scholar
  59. 59.
    Yang, Z, Nielsen, R, Goldman, N, Pedersen, AM 2000Codon substitution models for heterogeneous selection pressure at amino acid sites.Genetics1516001611PubMedGoogle Scholar
  60. 60.
    Zanotto PMde, A, Kallas, EG, de Souza, RF, Holmes, EC 1999Genealogical evidence for positive selection in the nef gene of HIV-1.Genetics15310771089PubMedGoogle Scholar
  61. 61.
    Zhang, PF, Chen, X, Fu, DW, Margolick, JB, Quinnan, GV 1999Primary virus envelope cross-reactivity of the broadening neutralizing antibody response during early chronic human immunodeficiency virus type 1 infection.J Virol7352255230PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  1. 1.Department of BiologyUniversity College London, Darwin Building, Gower Street, London WC1E 6BTUK

Personalised recommendations