Advertisement

Journal of Molecular Evolution

, Volume 57, Issue 1, pp 110–129 | Cite as

Molecular Evolution and Phylogeny of Elapid Snake Venom Three-Finger Toxins

  • B. G. Fry
  • W. Wüster
  • R. M. Kini
  • V. Brusic
  • A. Khan
  • D. Venkataraman
  • A. P. Rooney
Article

Abstract

Animal venom components are of considerable interest to researchers across a wide variety of disciplines, including molecular biology, biochemistry, medicine, and evolutionary genetics. The three-finger family of snake venom peptides is a particularly interesting and biochemically complex group of venom peptides, because they are encoded by a large multigene family and display a diverse array of functional activities. In addition, understanding how this complex and highly varied multigene family evolved is an interesting question to researchers investigating the biochemical diversity of these peptides and their impact on human health. Therefore, the purpose of our study was to investigate the long-term evolutionary patterns exhibited by these snake venom toxins to understand the mechanisms by which they diversified into a large, biochemically diverse, multigene family. Our results show a much greater diversity of family members than was previously known, including a number of subfamilies that did not fall within any previously identified groups with characterized activities. In addition, we found that the long-term evolutionary processes that gave rise to the diversity of three-finger toxins are consistent with the birth-and-death model of multigene family evolution. It is anticipated that this “three-finger toxin toolkit” will prove to be useful in providing a clearer picture of the diversity of investigational ligands or potential therapeutics available within this important family.

Keywords

Venom Three-finger toxin Multigene family Elapidae 

Notes

Acknowledgements

We dedicate this paper to the memory of our friend Dr. Joseph B. Slowinski, who died from snakebite in September of 2001 in Myanmar in the pursuit of new species of cobra. We are grateful for the financial assistance of the Australia and Pacific Science Foundation and the Melbourne Aquarium.

References

  1. 1.
    Afifiyan, F, Armugam, A, Tan, CH, Gopalakrishnakone, P, Jeyaseelan, K 1999Postsynaptic alpha-neurotoxin gene of the spitting cobra. Naja nafa sputatrix: Structure, organization, and phylogenetic analysis.Genome Res9259266PubMedGoogle Scholar
  2. 2.
    Aird, SD, Womble, GC, Yates 3rd, JR, Griffin, PR 1999Primary structure of γ-bungarotoxin, a new postsynaptic neurotoxin from venom of Bungarus multicinctus. Toxicon37609625CrossRefPubMedGoogle Scholar
  3. 3.
    Antil, S, Servent, D, Ménez, A 1999Variability among the sites by which curaremimetic toxins bind to Torpedo acetylcholine receptor, as revealed by identification of the funcation residues of α-cobratoxin.J. Biol Chem2743485134858CrossRefPubMedGoogle Scholar
  4. 4.
    Antil-Delbeke, S, Gaillard, C, Tamiya, T, Corringer, P-J, Changeux, J-P, Servent, D, Ménez, A 2000Molecular determinants by which a long chain toxin from snake venom interacts with the neuronal a7-nicotinic acetylcholine receptor.J Biol Chem2752959429601CrossRefPubMedGoogle Scholar
  5. 5.
    Assakura, MT, Furtado, MFD, Mandelbaum, FR 1992Biochemical and biological differentiation of the venoms of the Lancehead vipers (Bothrops atrox, Bothrops asper, Bothrops marajoensis and Bothrops moojeni).Comp Biochem Physiol102B727732Google Scholar
  6. 6.
    Branch, WR, Haagner, GV, Shine, R 1995Is there an ontogenetic shift in mamba diet? Taxonomic confusion and dietary records for black and green mambas (Dendroaspis: Elapidae).Herpetol Nat Hist3171178Google Scholar
  7. 7.
    Carsi, JM, Potter, LT 2000m1-toxin isoforms from the green mamba (Dendroaspis angusticeps) that selectively block m1 muscarinic receptors.Toxicon38187198CrossRefPubMedGoogle Scholar
  8. 8.
    Carsi, JM, Valentine, HH, Potter, LT 1999m2-toxin: A selective ligand for m2 muscarinic receptors.Mol Pharmacol56933937PubMedGoogle Scholar
  9. 9.
    Chang, L, Lin, S, Huang, H, Hsiao, M 1999Genetic organization of alpha-bungarotoxins from Bungarus multicinctus (Taiwan banded krait): Evidence showing that the production of α-bungarotoxin isotoxins is not derived from edited mRNAs.Nucleic Acids Res2739703975CrossRefPubMedGoogle Scholar
  10. 10.
    Daltry, JC, Wüster, W, Thorpe, RS 1996Diet and snake venom evolution.Nature379537540CrossRefPubMedGoogle Scholar
  11. 11.
    Dufton, MJ, Hider, RC 1991The structure and pharmacology of elapid cytotoxins.Harvey, AL eds. Snake toxins.Pergamon PressNew YorkGoogle Scholar
  12. 12.
    Endo, T, Tamiya, N 1987Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms.Pharmacol Ther34403451CrossRefPubMedGoogle Scholar
  13. 13.
    Felsenstein, J 2001PHYLIP (phylogeny inference package) version 36.Department of Genetics, University of WashingtonSeattle(http://evolutiongeneticswashingtonedu/phyliphtml)CrossRefPubMedGoogle Scholar
  14. 14.
    Fleming, TJ, Ohigin, C, Malek, TR 1993Characterization of two novel Ly-6 genes. Protein sequence and potential structural similarity to a-bungarotoxin and other neurotoxins.J Immunol15053795390PubMedGoogle Scholar
  15. 15.
    Fry, BG, Wickramaratna, JC, Hodgson, WC, Alewood, PF, Kini, RM, Ho, H, Wüster, W 2002Electrospray liquid chromatography/mass spectrometry fingerprinting of Acanthophis (death adder) venoms: Taxonomic and toxinological implications.Rapid Commun Mass Spectrom16600680CrossRefPubMedGoogle Scholar
  16. 16.
    Glenn, JL, Straight, RC, Wolfe, MC, Hardy, DL 1983Geographical variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) venom properties.Toxicon21119130CrossRefPubMedGoogle Scholar
  17. 17.
    Gong, N, Armugam, A, Jeyaseelan, K 1999Postsynaptic short-chain neurotoxins from Pseudonaja textilis. cDNA cloning, expression and protein characterization.Eur J Biochem265982989CrossRefPubMedGoogle Scholar
  18. 18.
    Gumley, TP, McKenzie, IFC, Sandrin, MS 1995Tissue expression, structure and function of the murine Ly-6 family of mole-cules.Immunol Cell Biol73277296PubMedGoogle Scholar
  19. 19.
    Heatwole, H, Poran, NS 1995Resistances of sympatric and allopatric eels to sea snake venoms.Copeia1136147Google Scholar
  20. 20.
    Jiménez-Porras, JM 1964Intraspecific variations in composition of venom of the jumping viper, Bothrops nummifera.Toxicon2187195CrossRefGoogle Scholar
  21. 21.
    Jolkkonen M (1996) Muscarinic toxins from Dendroaspis (mamba) venoms. Peptides selective for subtypes of muscarinic acetylcholine receptors. Acta Universitatis Upsaliensis. Comprehensive summaries of Uppsala dissertations from the Faculty of Science and Techonology 183Google Scholar
  22. 22.
    Joubert, FJ, Taljaard, N 1978The complete primary structure of toxin C from Dendroaspis polylepis polylepis (black mamba) venom.S Afr J Chem31107110Google Scholar
  23. 23.
    Joubert, FJ, Taljaard, N 1979Complete primary structure of toxin CM-1C from Hemachatus haemachatus (Ringhals) venom.S Afr J Chem327377Google Scholar
  24. 24.
    Karlsson, E, Jokkonen, M, Mulugeta, E, Onali, P, Adem, A 2000Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors.Biochimie82793806CrossRefPubMedGoogle Scholar
  25. 25.
    Keogh, JS 1998Molecular phylogeny of elapid snakes and a consideration of their biogeographic history.Biol J Linn Soc63177203CrossRefGoogle Scholar
  26. 26.
    Keogh, JS, Shine, R, Donnellan, S 1998Phylogenetic relationships of terrestrial Australo-Papuan elapid snakes (Subfamily Hydrophiinae) based on cytochrome b and 16SrRNA sequences.Mol Phylogenet Evol106781CrossRefPubMedGoogle Scholar
  27. 27.
    Kini, RM, Chan, YM 1999Accelerated evolution and molecular surface of venom phospholipase A(2) enzymes.J Mol Evol48125132PubMedGoogle Scholar
  28. 28.
    Kordis, D, Gubensek, F 2000Adaptive evolution of animal toxin multigene families.Gene2614352CrossRefPubMedGoogle Scholar
  29. 29.
    Kumar, TKS, Pandian, STK, Jayaraman, G, Peng, HJ, Yu, C 1999Understanding the structure, function and folding of cobra toxins.Proc Natl Sci Counc ROC(A)23119PubMedGoogle Scholar
  30. 30.
    Ménez, A 1998Functional architectures of animal toxins: A clue to drug design?Toxicon3615571572CrossRefPubMedGoogle Scholar
  31. 31.
    Moura-da-Silva, AM, Paine, MJ, Diniz, MR, Theakston, RD, Crampton, JM 1995The molecular cloning of a phospholipase A2 from Bothrops jararacussu snake venom: Evolution of venom group II phospholipase A2's may imply gene duplications.J Mol Evol41174179PubMedGoogle Scholar
  32. 32.
    Nakashima, K, Nobuhisa, I, Deshimaru, M,  et al. 1995Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes.Proc Natl Acad Sci USA9256055609PubMedGoogle Scholar
  33. 33.
    Nei, M, Gu, X, Sitnikova, T 1997Evolution by the birth-and-death process in multigene families of the vertebrate immune system.Proc Natl Acad Sci USA9477997806PubMedGoogle Scholar
  34. 34.
    Nirthanan, S, Charpantier, E, Gopalakrishnakone, P, Gwee, MCE, Khoo, H-E, Cheah, L-S, Bertrand, D, Kini, RM 2002Candoxin, a novel toxin from Bungarus candidus, is a reversible antagonist of muscle (alphabetagammadelta) but a poorly reversible antagonist of neuronal alpha 7 nicotinic acetylcholine receptors.J Biol Chem2771781117820CrossRefPubMedGoogle Scholar
  35. 35.
    Page, RD 2001Gene Tree, version 130.University of GlasgowGlasgow(available at http://taxonomyzoologyglaacuk/rod/rodhtml)PubMedGoogle Scholar
  36. 36.
    Pillet, L, Tremeau, O, Ducancel, F, Drevet, P, Zinn-Justin, S, Pinkasfeld, S, Boulain, JC, Ménez, A 1993Genetic engineering of snake toxins. Role of invariant residues in the structural and functional properties of a curaremimetic toxin, as probed by site-directed mutagenesis.J Biol Chem268909916PubMedGoogle Scholar
  37. 37.
    Poran, NS, Coss, RG, Benjamini, E 1987Resistance of California ground squirrels (Spermophilus beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus viridis oreganus): A study of adaptive variation.Toxicon25767777CrossRefPubMedGoogle Scholar
  38. 38.
    Rooney, AP, Piontkivska, H, Nei, M 2002Molecular evolution of the nontandemly repeated genes of the histone 3 multigene family.Mol Biol Evol196875PubMedGoogle Scholar
  39. 39.
    Saitou, N, Nei, M 1987The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol Biol Evol4406425PubMedGoogle Scholar
  40. 40.
    Slowinski, JB 1994A phylogenetic analysis of Bungarus (Elapidae) based on morphological characters.J Herpetol28440446Google Scholar
  41. 41.
    Slowinski, JB 1995A phylogenetic analysis of the New World coral snakes (Elapidae: Leptomicrurus, Micruroides, and Micrurus) based on allozymic and morphological characters.J Herpetol29325338Google Scholar
  42. 42.
    Slowinski, JB, Keogh, JS 2000Phylogenetic relationships of elapid snakes based on cytochrome b mtDNA sequences.Mol Phylogenet Evol51157164CrossRefGoogle Scholar
  43. 43.
    Slowinski, JB, Knight, A, Rooney, AR 1997Inferring species trees from gene trees: A phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins.Mol Phylogenet Evol8349362CrossRefPubMedGoogle Scholar
  44. 44.
    Slowinski, JB, Boundy, J, Lawson, R 2001The phylogenetic relationships of Asian coral snakes (Elapidae: Calliophis and Maticora) based on morphological and molecular characters.Herpetologica57233245Google Scholar
  45. 45.
    Stevens-Truss, R, Hinman, CL 1996Chemical modification of methionines in a cobra venom cytotoxin differentiates between lytic and binding domains.Toxicol App Pharmacol139234242CrossRefGoogle Scholar
  46. 46.
    Swofford, DS 2002PAUP*: Phylogenetic analysis using parsimony (* and other methods), version 4.0b10 for Macintosh.Sinauer AssociatesSunderland, MAGoogle Scholar
  47. 47.
    Takahashi, K, Nei, M 2000Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used.Mol Biol Evol1712511258PubMedGoogle Scholar
  48. 48.
    Takechi, M, Tanaya, Y, Ahayashi, K 1985Amino acid sequence of a cardiotoxin-like basic peptide (CLBP) with low cytotoxicity isolated from the venom of Formsan Cobra (Naja naja atra).Biochem Int11795802PubMedGoogle Scholar
  49. 49.
    Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res2548764882PubMedGoogle Scholar
  50. 50.
    Tsetlin, V 1999Snake venom alpha-neurotoxins and other ‘three-finger’ proteins.Eur J Biochem264281286CrossRefPubMedGoogle Scholar
  51. 51.
    Viljoen, CC, Botes, DP 1973Snake venom toxins. The purification and amino acid sequence of toxin F-VII from Dendroaspis angusticeps venom.J Biol Chem24849154919PubMedGoogle Scholar
  52. 52.
    Wüster, W, McCarthy, CJ 1996Venomous snake systematics: Implications for snakebite treatment and toxinology.Bon, CGoyffon, M eds. Envenomings and their treatments.Fondation MérieuxLyon1323Google Scholar
  53. 53.
    Yang, CC, Chang, LS, Wu, FS 1991Venom constituents of Notechis scutatus scutatus (Australian tiger snake) from differing geographic regions.Toxicon2913371344CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  • B. G. Fry
    • 1
    • 2
  • W. Wüster
    • 3
  • R. M. Kini
    • 2
  • V. Brusic
    • 4
  • A. Khan
    • 4
  • D. Venkataraman
    • 4
  • A. P. Rooney
    • 5
  1. 1.Australian Venom Research Unit, Department of PharmacologyUniversity of Melbourne, Parkville, Vic 3010Australia
  2. 2.Department of Biological SciencesNational University of SingaporeSingapore 119260
  3. 3.School of Biological SciencesUniversity of Wales, Bangor LL57 2UW, WalesUK
  4. 4.BioDiscovery GroupLaboratories for Information Technology, 21 Heng Mui Keng TerraceSingapore 119613
  5. 5.Mississippi State UniversityDepartment of Biology, P.O. Box GY, Mississippi State, MS 39762USA

Personalised recommendations