Journal of Molecular Evolution

, Volume 57, Supplement 1, pp S286–S289 | Cite as

The Coevolution of Blue-Light Photoreception and Circadian Rhythms

Article

Abstract

Sunlight is a primary source of energy for life. However, its UV component causes DNA damage. We suggest that the strong UV component of sunlight contributed to the selective pressure for the evolution of the specialized photoreceptor cryptochrome from photolyases involved in DNA repair and propose that early metazoans avoided irradiation by descending in the oceans during the daytime. We suggest further that it is not coincidental that blue-light photoreception evolved in an aquatic environment, since only blue light can penetrate to substantial depths in water. These photoreceptors were then also critical for sensing the decreased luminescence that signals the coming of night and the time to return to the surface. The oceans and the 24-h light–dark cycle therefore provided an optimal setting for an early evolutionary relationship between blue-light photoreception and circadian rhythmicity.

Keywords

Cryptochromes Circadian rhythms UV avoidance Photolyases 

References

  1. 1.
    Berson, DM, Dunn, FA, Takao, M 2002Phototransduction by retinal ganglion cells that set the circadian clock.Science29510701073PubMedGoogle Scholar
  2. 2.
    Boden, BP, Kampa, EM 1967The influence of natural light on the vertical migrations of an animal community in the sea.Symp Zool Soc Lond191526Google Scholar
  3. 3.
    Bogorov, BG 1946Peculiarities of diurnal vertical migrations of zooplankton in polar seas.J Mar Res62536Google Scholar
  4. 4.
    Cashmore, AR, Jarillo, JA, Wu, YJ, Liu, D 1999Cryptochromes: blue light receptors for plants and animals.Science284760765CrossRefPubMedGoogle Scholar
  5. 5.
    Cushing, DH 1951The vertical migration of planktonic Crustacea.Biol Rev Cambr Philos Soc26158192Google Scholar
  6. 6.
    Cuvier, G 1829Le règne animal.DétervilleParis164171Vol IVGoogle Scholar
  7. 7.
    Devlin, PF, Kay, SA 2000Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity.Plant Cell1224992510PubMedGoogle Scholar
  8. 8.
    Egan, ES, Franklin, TM, Hilderbrand-Chae, MJ, McNeil, GP, Roberts, MA, Schroeder, AJ, Zhang, X, Jackson, FR 1999An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants.J Neurosci1936653673PubMedGoogle Scholar
  9. 9.
    Emery, P, So, WV, Kaneko, M, Hall, JC, Rosbash, M 1998CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity.Cell95669679PubMedGoogle Scholar
  10. 10.
    Emery, P, Stanewsky, R, Hall, JC, Rosbash, M 2000A unique circadian-rhythm photoreceptor.Nature404456457PubMedGoogle Scholar
  11. 11.
    Fleischmann, EM 1989The measurement and penetration of ultraviolet radiation into tropical marine water.Limnol Oceanogr3416231629Google Scholar
  12. 12.
    Gooley, JJ, Lu, J, Chou, TC, Scammell, TE, Saper, CB 2001Melanopsin in cells of origin of the retinohypothalamic tract.Nat Neurosci41165PubMedGoogle Scholar
  13. 13.
    Hannibal, J, Hindersson, P, Knudsen, SM, Georg, B, Fahrenkrug, J 2002The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract.J Neurosci22RC191PubMedGoogle Scholar
  14. 14.
    Hattar, S, Liao, HW, Takao, M, Berson, DM, Yau, KW 2002Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity.Science29510651070PubMedGoogle Scholar
  15. 15.
    Helfrich-Forster, C, Winter, C, Hofbauer, A, Hall, JC, Stanewsky, R 2001The circadian clock of fruit flies is blind after elimination of all known photoreceptors.Neuron30249261PubMedGoogle Scholar
  16. 16.
    Huntsman, AG 1924Limiting factors for marine animals. The lethal effect of sunlight.Contrib Can Biol28288Google Scholar
  17. 17.
    Klugh, AB 1930The effect of the ultraviolet component of the sun’s radiation upon aquatic organisms.Can J Res2312317Google Scholar
  18. 18.
    Krishnan, B, Levine, JD, Lynch, MK, Dowse, HB, Funes, P, Hall, JC, Hardin, PE, Dryer, SE 2001A new role for cryptochrome in a Drosophila circadian oscillator.Nature411313317PubMedGoogle Scholar
  19. 19.
    Kume, K, Zylka, MJ, Sriram, S, Shearman, LP, Weaver, DR, Jin, X, Maywood, ES, Hastings, MH, Reppert, SM 1999mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop.Cell98193205PubMedGoogle Scholar
  20. 20.
    Lampert, W 1993Ultimate causes of diel vertical migration of zooplankton: New evidence for the predator-avoidance hypothesis.Arch Hydrobiol397988Google Scholar
  21. 21.
    Leech, DM, Williamson, CE 2001In situ exposure to ultraviolet radiation alters depth distribution of Daphnia.Limnol Oceanogr46416420Google Scholar
  22. 22.
    Lin, JM, Kilman, VL, Keegan, K, Paddock, B, Emery-Le, M, Rosbash, M, Allada, R 2002A role for casein kinase 2alpha in the Drosophila circadian clock.Nature420816820CrossRefPubMedGoogle Scholar
  23. 23.
    Nybakken, JW 2001Marine biology: An ecological approach, 5th ed.Benjamin CummingsSan FranciscoGoogle Scholar
  24. 24.
    Ohman, MD 1990The demographic benefits of diel vertical migration by zooplankton.Ecol Monogr60257281Google Scholar
  25. 25.
    Okano, S, Kanno, S, Takao, M, Eker, AP, Isono, K, Tsukahara, Y, Yasui, A 1999A putative blue-light receptor from Drosophila melanogaster.Photochem Photobiol69108113CrossRefPubMedGoogle Scholar
  26. 26.
    Pennington, JT, Emlet, RB 1986Ontogenetic and diel vertical migration of a planktonic echinoid larva, Dendraster excentricus (Escholtz): Occurrence, causes and probable consequences.Exp Mar Biol Ecol1046995CrossRefGoogle Scholar
  27. 27.
    Pittendrigh, CS 1993Temporal organization: Reflections of a Darwinian clock-watcher.Annu Rev Physiol551754CrossRefGoogle Scholar
  28. 28.
    Provencio, I, Rodriguez, IR, Jiang, G, Hayes, WP, Moreira, EF, Rollag, MD 2000A novel human opsin in the inner retina.J Neurosci20600605PubMedGoogle Scholar
  29. 29.
    Provencio, I, Rollag, MD, Castrucci, AM 2002Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night.Nature415493Google Scholar
  30. 30.
    Sancar, A 1994Structure and function of DNA photolyase.Biochemistry3329PubMedGoogle Scholar
  31. 31.
    Sancar, A 2000Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception.Annu Rev Biochem693167PubMedGoogle Scholar
  32. 32.
    Schopf, JW, Hayes, JM, Walter, MR 1983Earth’s Earliest Biosphere: Evolution of the earth’s earliest ecosystems: Recent progress and unsolved problems.Princeton University PressPrinceton, NJ361384Google Scholar
  33. 33.
    Selby, CP, Sancar, A 1999A third member of the photolyase/blue-light photoreceptor family in Drosophila: a putative circadian photoreceptor.Photochem Photobiol69105107CrossRefPubMedGoogle Scholar
  34. 34.
    Selby, CP, Thompson, C, Schmitz, TM, Van Gelder, RN, Sancar, A 2000Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice.Proc Natl Acad Sci USA971469714702CrossRefPubMedGoogle Scholar
  35. 35.
    Smith, KC, Macagno, ER 1990UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda). A fourth spectral class in single ommatidia.J Comp Physiol A166597606PubMedGoogle Scholar
  36. 36.
    Stanewsky, R, Kaneko, M, Emery, P, Beretta, B, Wager-Smith, K, Kay, SA, Rosbash, M, Hall, JC 1998The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila.Cell95681692PubMedGoogle Scholar
  37. 37.
    Storz, UC, Paul, RJ 1998Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light.J Comp Physiol A183709717Google Scholar
  38. 38.
    Thompson, CL, Blaner, WS, Van Gelder, RN, Lai, K, Quadro, L, Colantuoni, V, Gottesman, ME, Sancar, A 2001Preservation of light signaling to the suprachiasmatic nucleus in vitamin A-deficient mice.Proc Natl Acad Sci USA981170811713CrossRefPubMedGoogle Scholar
  39. 39.
    Todo, T, Ryo, H, Yamamoto, K, Toh, H, Inui, T, Ayaki, H, Nomura, T, Ikenaga, M 1996Similarity among the Drosophila (6-4) photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family.Science272109112PubMedGoogle Scholar
  40. 40.
    van der Horst, GT, Muijtjens, M, Kobayashi, K, Takano, R, Kanno, S, Takao, M, de Wit, J, Verkerk, A, Eker, AP, van Leenen, D, Buijs, R, Bootsma, D, Hoeijmakers, JH, Yasui, A 1999Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms.Nature398627630PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York LLC 2003

Authors and Affiliations

  1. 1.BiozentrumUniversity of Basel, Klingelbergstrasse, 70, 4056 BaselSwitzerland
  2. 2.Howard Hughes Medical InstituteBrandeis University, Department of Biology, Waltham, MA 02454USA

Personalised recommendations