Advertisement

Journal of Molecular Evolution

, Volume 57, Supplement 1, pp S103–S119 | Cite as

Statistical Properties of Neutral Evolution

  • Ugo BastollaEmail author
  • Markus Porto
  • H. Eduardo Roman
  • Michele Vendruscolo
Article

Abstract

Neutral evolution is the simplest model of molecular evolution and thus it is most amenable to a comprehensive theoretical investigation. In this paper, we characterize the statistical properties of neutral evolution of proteins under the requirement that the native state remains thermodynamically stable, and compare them to the ones of Kimura’s model of neutral evolution. Our study is based on the Structurally Constrained Neutral (SCN) model which we recently proposed. We show that, in the SCN model, the substitution rate decreases as longer time intervals are considered. Fluctuations from one branch of the evolutionary tree to another are strong, leading to a non-Poissonian statistics for the substitution process. Such strong fluctuations are in part due to the fact that neutral substitution rates for individual residues are strongly correlated for most residue pairs. Interestingly, structurally conserved residues, characterized by a much below average substitution rate, are also much less correlated to other residues and evolve in a much more regular way. Our results can improve methods aimed at distinguishing between neutral and adaptive substitutions as well as methods for computing the expected number of substitutions occurred since the divergence of two protein sequences. In particular, we compute the minimal sequence similarity below which no information about the evolutionary divergence of the compared sequences can be obtained.

Keywords

Neutral evolution Non-Poissonian substitution process Correlations 

References

  1. 1.
    Abkevich, VI, Gutin, AM, Shakhnovich, EI 1994Free energy landscapes for protein folding kinetics—intermediates, traps and multiple pathways in theory and lattice model simulations.J Chem Phys10160526062CrossRefGoogle Scholar
  2. 2.
    Babajide, A, Hofacker, IL, Sippl, MJ, Stadler, PF 1997Neutral networks in protein space.Fol Des2261269Google Scholar
  3. 3.
    Bastolla, U, Farwer, J, Knapp, EW, Vendruscolo, M 2001How to guarantee optimal stability for most representative structures in the protein data bank.Proteins447996CrossRefPubMedGoogle Scholar
  4. 4.
    Bastolla, U, Roman, HE, Vendruscolo, M 1999Neutral evolution of model proteins: Diffusion in sequence space and overdispersion.J Theor Biol2004964CrossRefPubMedGoogle Scholar
  5. 5.
    Bastolla, U, Porto, M, Roman, HE, Vendruscolo, M 2003Connectivity of neutral networks, overdispersion and structural conservation in protein evolution.J Mol Evol56243254CrossRefPubMedGoogle Scholar
  6. 6.
    Bastolla, U, Porto, M, Roman, HE, Vendruscolo, M 2002Lack of self-averaging in neutral evolution of proteins.Phys Rev Lett8920181/14CrossRefGoogle Scholar
  7. 7.
    Bastolla, U, Vendruscolo, M, Roman, HE 2000bStructurally constrained protein evolution: Results from a lattice simulation.Eur Phys J B15385397Google Scholar
  8. 8.
    Bastolla, U, Vendruscolo, M, Knapp, EW 2000aA statistical mechanical method to optimize energy functions for protein folding.Proc Natl Acad Sci USA9739773981Google Scholar
  9. 9.
    Bornberg-Bauer, E 1997How are model protein structures distributed in sequence space?Biophys J7323932403PubMedGoogle Scholar
  10. 10.
    Bornberg-Bauer, E, Chan, HS 1999Modeling evolutionary landscapes: Mutational stability, topology, and superfunnels in sequence space.Proc Natl Acad Sci USA961068910694CrossRefPubMedGoogle Scholar
  11. 11.
    Bowie, JU, Lüthy, R, Eisenberg, D 1991A method to identify protein sequences that fold into a known 3-dimensional structure.Science253164170PubMedGoogle Scholar
  12. 12.
    Britten, RJ 1986Rates of DNA sequence evolution differ between taxonomic groups.Science23113931398PubMedGoogle Scholar
  13. 13.
    Bussemaker, HJ, Thirumalai, D, Bhattacharjee, JK 1997Thermodynamic stability of folded proteins against mutations.Phys Rev Lett7935303533CrossRefGoogle Scholar
  14. 14.
    Dokholyan, NV, Shakhnovich, EI 2001Understanding hierarchical protein evolution from first principles.J Mol Biol312289307CrossRefPubMedGoogle Scholar
  15. 15.
    Fay, JC, Wyckoff, GJ, Wu, C-I 2002Testing the neutral theory of molecular evolution with genomic data from Drosophila.Nature41510241026CrossRefPubMedGoogle Scholar
  16. 16.
    Fontana, W, Schuster, P 1998Continuity in evolution: On the nature of transitions.Science28014511455CrossRefPubMedGoogle Scholar
  17. 17.
    Gillespie, JH 1991The causes of molecular evolution.Oxford University PressOxford, UKGoogle Scholar
  18. 18.
    Gillespie, JH 1989Lineage effects and the index of dispersion of molecular evolution.Mol Biol Evol6636647PubMedGoogle Scholar
  19. 19.
    Goldstein, RA, Luthey-Schulten, ZA, Wolynes, PG 1992Optimal protein-folding codes from spin-glass theory.Proc Natl Acad Sci USA8949184922PubMedGoogle Scholar
  20. 20.
    Govindarajan, S, Goldstein, RA 1997The foldability landscape of model proteins.Biopolymers42427438CrossRefPubMedGoogle Scholar
  21. 21.
    Govindarajan, S, Goldstein, RA 1998On the thermodynamic hypothesis of protein folding.Prod Natl Acad Sci USA9555455549CrossRefGoogle Scholar
  22. 22.
    Gutin, AM, Abkevich, VI, Shakhnovich, EI 1995.Proc Natl Acad Sci USA9212821286PubMedGoogle Scholar
  23. 23.
    Hobohm, U, Sander, C 1994Enlarged representative set of protein structure.Protein Sci3522524PubMedGoogle Scholar
  24. 24.
    Holm, L, Sander, C 1996Mapping the protein universe.Science273595602PubMedGoogle Scholar
  25. 25.
    Huynen, MA, Stadler, PF, Fontana, W 1996Smoothness within ruggedness: The role of neutrality in adaptation.Proc Natl Acad Sci USA93397401CrossRefPubMedGoogle Scholar
  26. 26.
    Kimura, M 1968Evolutionary rate at the molecular level.Nature217624626PubMedGoogle Scholar
  27. 27.
    Kimura, M 1977Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution.Nature267275276PubMedGoogle Scholar
  28. 28.
    Kimura, M 1983The neutral theory of molecular evolution.Cambridge University Press.Google Scholar
  29. 29.
    King, J-L, Jukes, TH 1969Non-Darwinian evolution.Science164788798PubMedGoogle Scholar
  30. 30.
    Langley, C-H, Fitch, WM 1974An estimation of the constancy of the rate of molecular evolution.J Mol Evol3161177PubMedGoogle Scholar
  31. 31.
    Li, WH, Tanimura, M, Sharp, PM 1987An evaluation of the molecular clock hypothesis using mammalian DNA sequences.J Mol Evol25330342PubMedGoogle Scholar
  32. 32.
    Graur, D, Li, WH 2000Fundamentals of molecular evolution.SinauerSunderland, MAGoogle Scholar
  33. 33.
    McDonald, J, Kreitman, M 1991Adaptive evolution at the Adh locus in Drosophila.Nature351652654PubMedGoogle Scholar
  34. 34.
    Mirny, LA, Shakhnovich, EI 1996How to derive a protein folding potential? A new approach to an old problem.J Mol Biol26411641179CrossRefPubMedGoogle Scholar
  35. 35.
    Mirny, LA, Shakhnovich, EI 1999Universally conserved positions in protein folds: Reading evolutionary signals about stability, folding kinetics, and function.J Mol Biol291177196CrossRefPubMedGoogle Scholar
  36. 36.
    Nei, M, Kumar, S 2000Molecular evolution and phylogenetics.Oxford University PressOxford, UKGoogle Scholar
  37. 37.
    Ohta, T 1973Slightly deleterious mutant substitutions in evolution.Nature2469698CrossRefPubMedGoogle Scholar
  38. 38.
    Ohta, T 1976Role of very slightly deleterious mutations in molecular evolution and polymorphism.Theor Pop Biol10254275Google Scholar
  39. 39.
    Ohta, T, Kimura, M 1971On the constancy of the evolutionary rate of cistrons.J Mol Evol11825PubMedGoogle Scholar
  40. 40.
    Perutz, MF, Kendrew, JC, Watson, HC 1965Structure and function of Haemoglobin: Some relations between polypeptide chain configuration and amino acid sequence.J Mol Biol13669678Google Scholar
  41. 41.
    Ptitsyn, OB, Ting, KH 1999Non-functional conserved residues in globins and their possible role as a folding nucleus.J Mol Biol291671682CrossRefPubMedGoogle Scholar
  42. 42.
    Rost, B 1997Protein structures sustain evolutionary drift.Fol Des2S19S24Google Scholar
  43. 43.
    Saitou, N, Nei, M 1987The neighbor-joining method—a new method for reconstructing phylogenetic trees.Mol Biol Evol4406425PubMedGoogle Scholar
  44. 44.
    Smith, NGC, Eyre-Walker, A 2002Adaptive protein evolution in Drosophila.Nature41510221024CrossRefPubMedGoogle Scholar
  45. 45.
    Schuster, P, Fontana, W, Stadler, PF, Hofacker, IL 1994From sequences to shapes and back—A case-study in RNA secondary structures.Proc R Soc Lond B255279284PubMedGoogle Scholar
  46. 46.
    Shakhnovich, E, Abkevich, V, Ptitsyn, O 1996Conserved residues and the mechanism of protein folding.Nature3799698CrossRefPubMedGoogle Scholar
  47. 47.
    Takahata, N 1987On the overdispersed molecular clock.Genetics116169179PubMedGoogle Scholar
  48. 48.
    Tiana, G, Broglia, RA, Roman, HE, Vigezzi, E, Shakhnovich, EI 1998Folding and misfolding of designed proteinlike chains with mutations.J Chem Phys108757761CrossRefGoogle Scholar
  49. 49.
    Thompson, JD, Higgins, DG, Gibson, TJ, Clustal, W 1994Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice.Nucleic Acids Res2246734680PubMedGoogle Scholar
  50. 50.
    Uzzell, T, Corbin, K 1971Fitting discrete probability distributions to evolutionary events.Science17210891096PubMedGoogle Scholar
  51. 51.
    Xia, Y, Levitt, M 2002Roles of mutation and recombination in the evolution of protein thermodynamics.Proc Natl Acad Sci USA991038210387CrossRefPubMedGoogle Scholar
  52. 52.
    Zuckerkandl, E, Pauling, L 1962Molecular disease, evolution and genetic heterogenity.Kasha, MPullman, B eds. Horizons in biochemistry.Academic PressNew York189225Google Scholar

Copyright information

© Springer-Verlag New York LLC 2003

Authors and Affiliations

  • Ugo Bastolla
    • 1
    Email author
  • Markus Porto
    • 2
  • H. Eduardo Roman
    • 3
  • Michele Vendruscolo
    • 4
  1. 1.Centro de Astrobiología (INTA-CSIC), 28850 Torrejon de ArdozSpain
  2. 2.Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Straβe 38, 01187 DresdenGermany
  3. 3.Dipartimento di Fisica and INFNUniversità di Milano, Via Celoria 16, 20133 MilanoItaly
  4. 4.Department of ChemistryUniversity of Cambridge, Lensfield Road, Cambridge CB2 1EWUnited Kingdom

Personalised recommendations