Journal of Molecular Evolution

, Volume 57, Supplement 1, pp S50–S59 | Cite as

Detection of New Transposable Element Families in Drosophila melanogaster and Anopheles gambiae Genomes

  • Hadi Quesneville
  • Danielle Nouaud
  • Dominique Anxolabéhère
Article

Abstract

The techniques that are usually used to detect transposable elements (TEs) in nucleic acid sequences rely on sequence similarity with previously characterized elements. However, these methods are likely to miss many elements in various organisms. We tested two strategies for the detection of unknown elements. The first, which we call “TBLASTX strategy,” searches for TE sequences by comparing the six-frame translations of the nucleic acid sequences of known TEs with the genomic sequence of interest. The second, “repeat-based strategy,” searches genomic sequences for long repeats and clusters them in groups of similar sequences. TE copies from a given family are expected to cluster together. We tested the Drosophila melanogaster genomic sequence and the recently sequenced Anopheles gambiae genome in which most TEs remain unknown. We showed that the “TBLASTX strategy” is very efficient as it detected at least 332 new TE families in D. melanogaster and 400 in A. gambiae. This was unexpected in Drosophila as TEs of this organism have been extensively studied. The “repeat-based strategy” appeared to be very inefficient because of two problems: (i) TE copies are heavily deleted and few copies share homologous regions, and (ii) segmental duplications are frequent and it is not easy to distinguish them from TE copies.

Keywords

Transposable elements Segmental duplications Annotations Bioinformatics Genomics Drosophila melanogaster Anopheles gambiae 

References

  1. 1.
    Achaz, G, Netter, P, Coissac, E 2001Study of intrachromosomal duplications among the eukaryote genomes.Mol Biol Evol1822802288PubMedGoogle Scholar
  2. 2.
    Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ 1990Basic local alignment search tool.J Mol Biol215403410CrossRefPubMedGoogle Scholar
  3. 3.
    Altschul, SF, Madden, TL, Schäffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ 1997Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.Nucleic Acids Res2533893402PubMedGoogle Scholar
  4. 4.
    Bailey, JA, Yavor, AM, Massa, HF, Trask, BJ, Eichler, EE 2001Segmental duplications: organization and impact within the current human genome project assembly.Genome Res1110051017Google Scholar
  5. 5.
    Berezikov, E, Bucheton, A, Busseau, I 2000A search for reverse transcriptase-coding sequences reveals new non-LTR retrotransposons in the genome of Drosophila melanogaster.Genome Biol1research0011.10011.1CrossRefGoogle Scholar
  6. 6.
    Brunet, F, Giraud, T, Godin, F, Capy, P 2002Do deletions of Mos1-like elements occur randomly in the Drosophilidae family?J Mol Evol54227234CrossRefPubMedGoogle Scholar
  7. 7.
    Chao, KM, Zhang, J, Ostell, J, Miller, W 1995A local alignment tool for very long DNA sequences.Comput Appl Biosci11147153PubMedGoogle Scholar
  8. 8.
    Charlesworth, B, Langley, CH 1989The population genetics of Drosophila transposable elements.Annu Rev Genet23251287CrossRefPubMedGoogle Scholar
  9. 9.
    Eddy, SR 1998Profile hidden Markov models.Bioinformatics14755763CrossRefPubMedGoogle Scholar
  10. 10.
    Gusfield, D 1997Algorithms on strings, trees, and sequences. Computer sciences and computational biology.Cambridge University PressCambridge325329Google Scholar
  11. 11.
    International Human Genome Sequencing Consortium2001Initial sequencing and analysis of the human genome.Nature409860921PubMedGoogle Scholar
  12. 12.
    Jurka, J 2000Repbase update: A database and an electronic journal of repetitive elements.Trends Genet16418420Google Scholar
  13. 13.
    Kapitonov VV, Jurka J (1998–2002) Repbase update (www.girinst.org/Repbase_Update )
  14. 14.
    Kapitonov, VV, Jurka, J 2001Rolling circle transposons in eukaryotes.PNAS9887148719CrossRefPubMedGoogle Scholar
  15. 15.
    Myers, EW, Miller, W 1988Optimal alignments in linear space.Comput Appl Biosci41117PubMedGoogle Scholar
  16. 16.
    Myers, EW, Sutton, GG, Delcher, AL,  et al. 2000A whole-genome assembly of Drosophila.Science28721962204CrossRefPubMedGoogle Scholar
  17. 17.
    Petrov, DA, Hartl, DL 1998High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups.Mol Biol Evol15293302PubMedGoogle Scholar
  18. 18.
    Quesneville, H, Anxolabéhère, D 2001Genetic algorithm based model of evolutionary dynamics of class II transposable elements.J Theor Biol2132130CrossRefPubMedGoogle Scholar
  19. 19.
    Smit, AF 1999Interpersed repeats and other mementos of transposable elements in mammalian genomes.Curr Opin Genet Dev9657663PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York LLC 2003

Authors and Affiliations

  • Hadi Quesneville
    • 1
  • Danielle Nouaud
    • 1
  • Dominique Anxolabéhère
    • 1
  1. 1.Laboratoire Dynamique du Génome et EvolutionInstitut Jacques Monod, 2, Place Jussieu, 75251 Paris Cedex 05France

Personalised recommendations