Journal of Molecular Evolution

, Volume 57, Supplement 1, pp S29–S40 | Cite as

Morphological Convergence in Hippidion and Equus (Amerhippus) South American Equids Elucidated by Ancient DNA Analysis

  • Ludovic Orlando
  • Véra Eisenmann
  • Frédéric Reynier
  • Paul Sondaar
  • Catherine HänniEmail author


Unusual equids named hippidions inhabited South America for more than 2 MY (million years). Like many other animals they succumbed to the worldwide climatic change that occurred 10 KY (thousand years) ago and completely disappeared during the great late Pleistocene megafaunal extinction. According to fossil records and numerous dental, cranial, and postcranial characters, Hippidion and Equus lineages are known to have diverged prior to 10 MY. Some equid bones from Rio Verde and Ultima Esperanza (Patagonia, Chile) dating back to the late Pleistocene period (8–13 KY) have been identified as Hippidion saldiasi, while a few teeth have been assigned to Equus. Six samples of those remains have been obtained from the Zoological Museum of Amsterdam for ancient DNA analysis to try to place Hippidion in the evolutive tree of Perissodactyla. Two samples of Hippidion and one sample of Equus yielded 241–394 bp of the mtDNA control region and 172–296 bp of the cytochrome b gene. Unexpectedly, all the sequences clustered deep inside the Equus genus, casting doubt on the initial identification of the bones. For paleontologists, one of the striking and classical diagnostic characters of Hippidion is their extremely short and massive metapodials, a probable locomotory adaptation to the Andine steep slopes. However, our DNA analysis reveals that a very Hippidion-like metapod might also have been possessed by another South American equid, i.e., Equus (Amerhippus), an interpretation supported by complementary anatomical observations. This adaptive convergence between members of the two South American equid genera may lead paleontologists to limb bone misidentification.


Ancient DNA Equus (AmerhippusHippidion Equids Ultima Esperanza mtDNA control region 


  1. 1.
    Alberdi, MT, Frassinetti, D 2000Presencia de Hippidion y Equus (Amerhippus) (Mammalia, Perissodactyla) y su distribucion en el Pleistoceno superior de Chile.Estud Geol56279290Google Scholar
  2. 2.
    Alberdi, MT, Prado, JL 1993Review of the genus Hippidion Owen, 1869 (Mammalia, Perissodactyla) from the Pleistocene of South America.Zool J Linn Soc108122CrossRefGoogle Scholar
  3. 3.
    Alberdi, MT, Prieto, A 2000 Hippidion (Mammalia, Perissodactyla) de las cuevas de las provincias de Magallanes y Tierra del Fuego.Anal Inst Patagonia Ser Cien Hum Chile28147171Google Scholar
  4. 4.
    Alberdi, MT, Menegaz, AN, Prado, JL 1987Formas terminales de Hippidion (Mammalia, Perissodactyla) de los yacimientos del Pleistoceno tardio-Holoceno de la Patagonia (Argentina y Chile).Estud Geol43107115Google Scholar
  5. 5.
    Boule, M, Thevenin, A 1920Mammiferes fossiles de Tarija. Mission Scientifique Crequi-Montfort et Senechal de la Grande, VII.SoudierParisGoogle Scholar
  6. 6.
    Darwin, C 1836Voyage of the Beagle.Penguin ClassicsLondonGoogle Scholar
  7. 7.
    Eisenmann, V 1979Caracteres evolutifs et phylogenie du genre Equus (Mammalia; Perissodactyla).CR Acad Sci D288497500Google Scholar
  8. 8.
    Eisenmann, V, Baylac, M 2000Extant and fossil Equus (Mammalia, Perissodactyla) skulls: A morphometric defintion of the subgenus Equus.Zool Scripta2989100CrossRefGoogle Scholar
  9. 9.
    Felsenstein J (1993) PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author, Department of Genetics, University of Washington, SeattleGoogle Scholar
  10. 10.
    Galtier, N, Gouy, M, Gautier, C 1996SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny.Comput Appl Biosci12543548PubMedGoogle Scholar
  11. 11.
    Gould, SJ 1994Hen’s teeth and horse’s toe. Further reflections in natural history.NortonNew York/LondonGoogle Scholar
  12. 12.
    Groves, CP, Willoughby, DP 1981Studies on the taxonomy and phylogeny of the genus Equus.Mammalia45321354PubMedGoogle Scholar
  13. 13.
    Hänni, C, Laudet, V, Stehelin, D, Taberlet, P 1994Tracking the origins of the cave bear (Ursus spelaeus) by mitochondrial DNA sequencing.Proc Natl Acad Sci USA911233612340PubMedGoogle Scholar
  14. 14.
    Higuchi, R, Bowman, B, Freiberger, M, Ryder, OA, Wilson, AC 1984DNA sequences from the quagga, an extinct member of the horse family.Nature312282284PubMedGoogle Scholar
  15. 15.
    Higuchi, RG, Wrischnik, LA, Oakes, E, George, M, Tong, B, Wilson, AC 1987Mitochondrial DNA of the extinct quagga: relatedness and extent of postmortem change.J Mol Evol25283287PubMedGoogle Scholar
  16. 16.
    Hoffstetter R (1952) Les Mammiferes pleistocenes de la republique de l’Equateur. Memoires de la Societe geologique de France. Nouvelle serie, Tome XXXI, fascicules 1–4, Memoire 66, ParisGoogle Scholar
  17. 17.
    Hofreiter, M, Serre, D, Poinar, HN, Kuch, M, Pääbo, S 2001aAncient DNA.Nat Rev Genet2353359Google Scholar
  18. 18.
    Hofreiter, M, Jaenicke, V, Serre, D, Haeseler Av, A, Pääbo, S 2001bDNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA.Nucleic Acids Res2947934799Google Scholar
  19. 19.
    Hoss, M, Jaruga, P, Zastawny, TH, Dizdaroglu, M, Pääbo, S 1996DNA damage and DNA sequence retrieval from ancient tissues.Nucleic Acids Res2413041307CrossRefPubMedGoogle Scholar
  20. 20.
    Irwin, DM, Kocher, TD, Wilson, AC 1991Evolution of the cytochrome b gene of mammals.J Mol Evol32128144PubMedGoogle Scholar
  21. 21.
    Ishida, N, Hasegawa, T, Takeda, K, Sakagami, M, Onishi, A, Inumaru, S, Komatsu, M, Mukoyama, H 1994Polymorphic sequence in the D-loop region of equine mitochondrial DNA.Anim Genet25215221PubMedGoogle Scholar
  22. 22.
    Ishida, N, Hasegawa, T, Oyunsuren, T, Mukoyama, H 1996PCR-RFLP analysis of the cytochrome b gene in horse mitochondrial DNA.Anim Genet27359363PubMedGoogle Scholar
  23. 23.
    Ishida, N, Oyunsuren, T, Mashima, S, Mukoyama, H, Saitou, N 1998Mitochondrial DNA sequences of various species of the genus Equus with special reference to the phylogenetic relationship between Przewalskii’s wild horse and domestic horse.J Mol Evol41180188Google Scholar
  24. 24.
    Kavar, T, Habe, F, Brem, G, Dove, P 1999Mitochondrial D-loop sequence variation among the 16 maternal lines of the Lipizzan horse breed.Anim Genet30423430CrossRefPubMedGoogle Scholar
  25. 25.
    Kim, KI, Yang, YH, Lee, SS, Park, C, Ma, R, Bouzat, JL, Lewin, HA 1999Phylogenetic relationships of Cheju horses to other horse breeds as determined by mtDNA D-loop sequence polymorphism.Anim Genet30102l08CrossRefPubMedGoogle Scholar
  26. 26.
    Lindahl, T 1993Instability and decay of the primary structure of DNA.Nature362709715PubMedGoogle Scholar
  27. 27.
    Lindsay, EH, Opdyke, ND, Johnson, NM 1980Pliocene dispersal of the horse Equus and late Cenozoic mammalian dispersal events.Nature287135139Google Scholar
  28. 28.
    Lister, AM, Kadwell, M, Kaagan, LM, Stanley, HF 1998Ancient and modern DNA in a study of horse domestication.Anc Biomol2267Google Scholar
  29. 29.
    Loreille, O, Orlando, L, Patou-Mathis, M, Philippe, M, Taberlet, P, Hänni, C 2001Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages.Curr Biol11200203CrossRefPubMedGoogle Scholar
  30. 30.
    MacFadden, BJ 1997Pleistocene horses from Tarija, Bolivia, and validity of the genus Onohippidium (Mammalia: Equidae).J Vertebr Paleontol17199218Google Scholar
  31. 31.
    Oakenfull, EA, Ryder, OA 1998Mitochondrial control region and 12S rRNA variation in Przewalski’s horse (Equus przewalskii).Anim Genet29456459CrossRefPubMedGoogle Scholar
  32. 32.
    Oakenfull, EA, Lim, HN, Ryder, OA 2000A survey of equid mitochondrial DNA: Implications for the evolution, genetic diversity and conservation of Equus.Conserv Genet1341355CrossRefGoogle Scholar
  33. 33.
    Orlando, L, Bonjean, D, Bocherens, H, Thenot, A, Argant, A, Otte, M, Hänni, C 2002Ancient DNA and the population genetics of cave bears (Ursus spelaeus) through space and time.Mol Biol Evol1919201933PubMedGoogle Scholar
  34. 34.
    Prao, JL, Alberdi, MT 1994A quantitative review of the horse Equus from South America.Paleontology37459481Google Scholar
  35. 35.
    Sefve I (1912) Die fossilen Pferde Südamerikas. Kungl Svenska Vetenskapskademiens Handlingar, Bd 48, No. 6, Uppsala/StockholmGoogle Scholar
  36. 36.
    Thioulouse, J, Chevenet, F 1996NetMul, a World-Wide Web user interface for multivariate analysis software.Comput Stat Data Anal21369372CrossRefGoogle Scholar
  37. 37.
    Tougard, C, Delefosse, T, Hänni, C, Montgelard, C 2001Phylogenetic relationships of the five extant Rhinoceros species (Rhinocerotidae, Perissodactyla) based on mitochondrial cytochrome b and 12S rRNA genes.Mol Phylogenet Evol193444CrossRefPubMedGoogle Scholar
  38. 38.
    Vila, C, Leonard, JA, Gotherstrom, A, Marklund, S, Sandberg, K, Liden, K, Wayne, RK, Ellegren, H 2001Widespread origins of domestic horse lineages.Science291474477CrossRefPubMedGoogle Scholar
  39. 39.
    Xu, X, Arnason, U 1994The complete mitochondrial DNA sequence of the horse, Equus caballus: Extensive heteroplasmy of the control region.Gene148357362CrossRefPubMedGoogle Scholar
  40. 40.
    Xu, X, Arnason, U 1997The complete mitochondrial DNA sequence of the white rhinoceros, Ceratotherium simum, and comparison with the mtDNA sequence of the Indian rhinoceros, Rhinoceros unicornis.Mol Phylogenet Evol7189194CrossRefPubMedGoogle Scholar
  41. 41.
    Xu, X, Gullberg, A, Arnason, U 1996The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely related mammalian species-pairs.J Mol Evol43438446PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York LLC 2003

Authors and Affiliations

  • Ludovic Orlando
    • 1
  • Véra Eisenmann
    • 2
  • Frédéric Reynier
    • 1
  • Paul Sondaar
    • 3
  • Catherine Hänni
    • 1
    Email author
  1. 1.CNRS UMR 5534, Centre de Génétique Moléculaire et CellulaireUniversité Claude Bernard Lyon 1, 16 rue R. Dubois, Bâtiment G. Mendel, 69622 Villeurbanne CedexFrance
  2. 2.CNRS UMR 8569 and ESA 8045, Muséum National d’Histoire NaturelleLaboratoire de Paléontologie, 8 rue Buffon, 75005 ParisFrance
  3. 3.Zoölogisch MuseumPostbus 94766, 1090GT AmsterdamThe Netherlands

Personalised recommendations