Journal of Molecular Evolution

, Volume 56, Issue 6, pp 718–729 | Cite as

Epigenetic Silencing May Aid Evolution by Gene Duplication

Article

Abstract

Gene duplication is commonly regarded as the main evolutionary path toward the gain of a new function. However, even with gene duplication, there is a loss-versus-gain dilemma: most newly born duplicates degrade to pseudogenes, since degenerative mutations are much more frequent than advantageous ones. Thus, something additional seems to be needed to shift the loss versus gain equilibrium toward functional divergence. We suggest that epigenetic silencing of duplicates might play this role in evolution. This study began when we noticed in a previous publication (Lynch M, Conery JS [2000] Science 291:1151–1155) that the frequency of functional young gene duplicates is higher in organisms that have cytosine methylation (H. sapiens, M. musculus, and A. thaliana) than in organisms that do not have methylated genomes (S. cerevisiae, D. melanogaster, and C. elegans). We find that genome data analysis confirms the likelihood of much more efficient functional divergence of gene duplicates in mammals and plants than in yeast, nematode, and fly. We have also extended the classic model of gene duplication, in which newly duplicated genes have exactly the same expression pattern, to the case when they are epigenetically silenced in a tissue- and/or developmental stage-complementary manner. This exposes each of the duplicates to negative selection, thus protecting from “pseudogenization.” Our analysis indicates that this kind of silencing (i) enhances evolution of duplicated genes to new functions, particularly in small populations, (ii) is quite consistent with the subfunctionalization model when degenerative but complementary mutations affect different subfunctions of the gene, and (iii) furthermore, may actually cooperate with the DDC (duplication– degeneration–complementation) process.

Keywords

Comparative genomics Gene families Pseudogenes Gene expression Methylation Imprinting 

References

  1. 1.
    Bell, AC, Felsenfeld, G 2000Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene.Nature405482485CrossRefPubMedGoogle Scholar
  2. 2.
    Brown, KE, Amoils, S, Horn, JM, Buckle, VJ, Higgs, DR, Merkenschlager, M, Fisher, AG 2001Expression of α-and β-globin genes occurs within different nuclear domains in haemopoetic cells.Nature Cell Biol3602606Google Scholar
  3. 3.
    Chiu, C-h, Amemiya, C, Dewar, K, Kim, C-B, Ruddle, FH, Wagner, GP 2002Molecular evolution of the HoxA cluster in the three major gnathostome lineages.Proc Natl Acad Sci USA9954925497CrossRefGoogle Scholar
  4. 4.
    Clark, AG 1994Invasion and maintenance of a gene duplication.Proc Natl Acad Sci USA9129502954PubMedGoogle Scholar
  5. 5.
    Cockell, M, Gasser, SM 1999Nuclear compartments and gene regulation.Curr Opin Genet Dev9199205PubMedGoogle Scholar
  6. 6.
    Crow, J, Kimura, M 1970Introduction to population genetics theory.Harper and RowNew YorkGoogle Scholar
  7. 7.
    Flavell, RB 1994Inactivation of gene expression in plants as a consequence of specific sequence duplication.Proc Natl Acad Sci USA9134903496PubMedGoogle Scholar
  8. 8.
    Force, A, Lynch, M, Pickett, B, Amores, A, Yan, Y-l, Postlethwait, J 1999Preservation of duplicate genes by complementary, degenerative mutations.Genetics15115311545PubMedGoogle Scholar
  9. 9.
    Gu, Z, Nicolae, D, Lu, H, Li, W-H 2002aRapid divergence in expression between duplicate genes inferred from microarray data.Trends Genet18609613Google Scholar
  10. 10.
    Gu, Z, Cavalcanti, A, Chen, F-C, Bouman, P, Li, W-H 2002bExtent of gene duplication in the genomes of Drosophila, nematode, and yeast.Mol Biol Evol19256262Google Scholar
  11. 11.
    Hardison, R 1998Hemoglobin from bacteria to man: Evolution of different patterns of gene expression.J Exp Biol20110991117PubMedGoogle Scholar
  12. 12.
    Harrison, PM, Kumar, A, Lang, N, Snyder, M, Gerstein, M 2002A question of size: The eukaryotic proteome and the problems in defining it.Nucleic Acids Res3010831090PubMedGoogle Scholar
  13. 13.
    Holliday, R, Pugh, JE 1975DNA modification mechanisms and gene activity during development.Science187226232PubMedGoogle Scholar
  14. 14.
    Hughes, AL 1999Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history.J Mol Evol48565576PubMedGoogle Scholar
  15. 15.
    Jenuwein, T, Allis, CD 2001Translating the histone code.Science29310741080PubMedGoogle Scholar
  16. 16.
    Kimura, M 1971Theoretical foundation of population genetics at the molecular level.Theor Popul Biol2174208PubMedGoogle Scholar
  17. 17.
    Kimura, M 1983The neutral theory of molecular evolution.Cambridge University PressCambridgeGoogle Scholar
  18. 18.
    Kimura, M, King, JL 1979Fixation of a deleterious allele at one of two “duplicate” loci by mutation pressure and random drift.Proc Natl Acad Sci USA7628582861PubMedGoogle Scholar
  19. 19.
    Lee, H-S, Chen, Z 2001Protein-coding genes are epigenetically regulated in Arabidopsis polyploids.Proc Natl Acad Sci USA9867536758PubMedGoogle Scholar
  20. 20.
    Li, W-H 1997Molecular evolution.Sinauer AssociatesSunderland, MAGoogle Scholar
  21. 21.
    Li, W-H, Gu, Z, Wang, H, Nekrutenko, A 2001Evolutionary analysis of the human genome.Nature409847849PubMedGoogle Scholar
  22. 22.
    Lynch, M, Conery, JS 2000The evolutionary fate and consequences of duplicate genes.Science29011511155CrossRefPubMedGoogle Scholar
  23. 23.
    Lynch, M, Force, A 2000The probability of duplicate gene preservation by subfunctionalization.Genetics154459473PubMedGoogle Scholar
  24. 24.
    Lynch, M, O’Hely, M, Walsh, B, Force, A 2001The probability of preservation of a newly arisen gene duplicate.Genetics15917891804Google Scholar
  25. 25.
    Mounsey, A, Bauer, P, Hope, IA 2002Evidence suggesting that a fifth of annotated Caenorhabditis elegans genes may be pseudogenes.Genome Res12770775PubMedGoogle Scholar
  26. 26.
    Nadeau, JH, Sankoff, D 1997Comparative rates of gene loss and functional divergence after genome duplications early in vertebrate evolution.Genetics14712591266PubMedGoogle Scholar
  27. 27.
    Nei, M, Roychoudhury, AK 1973Probability of fixation of nonfunctional genes at duplicate loci.Am Nat107362372Google Scholar
  28. 28.
    Ohno, S 1970Evolution by gene duplication.SpringerBerlinGoogle Scholar
  29. 29.
    Ohta, T 1987Simulating evolution by gene duplication.Genetics115207213PubMedGoogle Scholar
  30. 30.
    Ratner, VA, Zharkikh, AA, Kolchanov, NA, Rodin, SN, Solovyov, VV, Antonov, AS 1996Molecular evolution.SpringerBerlinGoogle Scholar
  31. 31.
    Riggs, AD 1975X-inactivation, differentiation and DNA methylation.Cytogenet Cell Genet14925Google Scholar
  32. 32.
    Riggs, AD, Porter, TN 1996

    Overview of epigenetic mechanisms.

    Russo, EAMartienssen, RARiggs, AD eds. Epigenetic mechanisms of gene regulation.Cold Spring Harbor Laboratory PressNew York2945
    Google Scholar
  33. 33.
    Rodin, SN 1991Idea of coevolution.NaukaNovosibirsk (in Russian)Google Scholar
  34. 34.
    Rossignol, JL, Faugeron, G 1994Gene inactivation triggered by recognition between DNA repeats.Experientia50307317PubMedGoogle Scholar
  35. 35.
    Sadhu, A, Shen, ML, Hackbarth, M, Hume, E, McKeithan, TW 1997CpG-rich sequences close to the site of duplication within the human IGH constant region.Immunogenetics45365370PubMedGoogle Scholar
  36. 36.
    Skaer, N, Pistillo, D, Gibert, J-M, Lio, P, Wulbeck, C, Simpson, P Gene duplication at the achaete-scute complex and morphological complexity of the peripheral nervous system in Diptera.Trends Genet18399405Google Scholar
  37. 37.
    Tweedie, S, Charlton, J, Clark, V, Bird, A 1997Methylation of genomes and genes at the invertebrate-vertebrate boundary.Mol Cell Biol1714691475PubMedGoogle Scholar
  38. 38.
    Venter, JC,  et al. 2001The sequence of the human genome.Science2113041351Google Scholar
  39. 39.
    Wagner, A 1998The fate of duplicated genes: loss or new function?BioEssays20785788CrossRefPubMedGoogle Scholar
  40. 40.
    Wagner, A 2001Birth and death of duplicated genes in completely sequenced eukaryotes.Trends Genet17237239PubMedGoogle Scholar
  41. 41.
    Walsh, JB 1995How often do duplicated genes evolve new functions?Genetics139421428PubMedGoogle Scholar
  42. 42.
    Wolfe, KH 2001Yesterday’s polyploids and the mystery of diplodization.Nature Rev Genet2333341Google Scholar
  43. 43.
    Wolffe, AP, Matzke, MA 1999Epigenetics: Regulation through repression.Science286481486Google Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  1. 1.Theoretical Biology DepartmentBeckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000USA
  2. 2.Biology DivisionBeckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000USA

Personalised recommendations