Journal of Molecular Evolution

, Volume 54, Issue 5, pp 595–613

The Chemical Basis of Membrane Bioenergetics

  • Stephan  Berry

DOI: 10.1007/s00239-001-0056-3

Cite this article as:
Berry, S. J Mol Evol (2002) 54: 595. doi:10.1007/s00239-001-0056-3

Abstract.

All organisms rely on chemiosmotic membrane systems for energy transduction; the great variety of participating proteins and pathways can be reduced to a few universal principles of operation. This chemical basis of bioenergetics is reviewed with respect to the origin and early evolution of life. For several of the cofactors which play important roles in bioenergetic reactions, plausible prebiotic sources have been proposed, and it seems likely that these cofactors were present before elaborate protein structures. In particular, the hydrophobic quinones require only a membrane-enclosed compartment to yield a minimum chemiosmotic system, since they can couple electron transport and proton translocation in a simple way. It is argued that the central features of modern bioenergetics, such as the coupling of redox reactions and ion translocation at the cytoplasmic membrane, probably are ancient features which arose early during the process of biogenesis. The notion of a thermophile root of the universal phylogenetic tree has been discussed controversially, nevertheless, thermophiles are interesting model organisms for reconstructing the origin of chemiosmotic systems, since they are often acidophiles and anaerobic respirers exploiting iron–sulfur chemistry. This perspective can help to explain the prominent role of iron–sulfur proteins in extant biochemistry as well as the origin of both respiration and proton extrusion within the context of a possible origin of life in the vicinity of hot vents.

Key words: Chemiosmotic theory — Electron transport — Origin of life — Photosynthesis — Prebiotic chemistry — Proton translocation — Respiration — Sodium bioenergetics — Thermophiles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 2002

Authors and Affiliations

  • Stephan  Berry
    • 1
  1. 1.Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, D-44780 Bochum, GermanyDE

Personalised recommendations