Journal of Molecular Evolution

, Volume 54, Issue 3, pp 416–423 | Cite as

The Correct Phylogenetic Relationship of KdsA (3-Deoxy-D-manno-octulosonate 8-Phosphate Synthase) with One of Two Independently Evolved Classes of AroA (3-Deoxy-D-arabino-heptulosonate 7-Phosphate Synthase)

  • Roy A. JensenEmail author
  • Gary Xie
  • David H. Calhoun
  • Carol A. Bonner


Chlamydia Trachomatis Neisseria Gonorrhoeae Bordetella Pertussis Yersinia Pestis Invariant Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asojo O, Friedman J, Adir N, Belakhov V, Shoham Y, Baasov T (2001) Crystal structures of KDOP synthase in its binary complexes with the substrate phosphoenolpyruvate and with a mechanismbased inhibitor. Biochemistry 40:6326–6334PubMedCrossRefGoogle Scholar
  2. Birck MR, Woodard RW (2001) Aquifex aeolicus 3-deoxy-D-manno- 2-octulosonic acid 8-phosphate synthase: A new class of KDO 8-P synthase? J Mol Evol 52:205-214Google Scholar
  3. Brabetz W, Wolter FP, Brade H (2000) A cDNA encoding 3-deoxy- D-manno-oct-2-ulosonate-8-phosphate synthase of Pisum sativum L. (pea) functionally complements a kdsA mutant of the Gramnegative bacterium Salmonella enterica. Planta 212:136-143Google Scholar
  4. Doong RL, Jensen RA (1992) Synonymy of the three apparent isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase in Pisum sativum L. with 3-deoxy-D-manno-octulosonate 8-phosphate synthase and the DS-Co/DS-Mn isoenzyme pair. New Phytol 121:165-171Google Scholar
  5. Doong RL, Ahmad S, Jensen RA (1991) Higher plants express 3-deoxy- D-manno-octulosonate 8-phosphate synthase. Plant Cell Environ 14:113-120Google Scholar
  6. Duewel HS, Radaev S, Wang J, Woodard RW, Gatti DL (2001) Substrate and metal complexes of 3-deoxy-D-manno-octulosonate-8- phosphate synthase from Aquifex aeolicus at 1.9-Å resolution. J Biol Chem 276:8393-8402Google Scholar
  7. Felsenstein J (1989) PHYLIP-Phylogeny inference package (version 3.2). Cladistics 5:164-166Google Scholar
  8. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN:Two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12(6):543-548Google Scholar
  9. Gosset G, Bonner CA, Jensen RA (2001) Microbial origin of plant-type 2-keto-3-deoxy-D-arabino-heptulosonate 7-phosphate synthases, exemplified by the chorismate and tryptophan-regulated enzyme from Xanthomonas campestris. J Bacteriol 183:4061-4070Google Scholar
  10. Hall T (2001) Biological sequence alignment editor for Windows 95/98/NT, 5.09 ed. North Carolina State University, Raleigh ( Scholar
  11. Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409-425Google Scholar
  12. Jensen RA, Nester EW (1966) Regulatory enzymes of aromatic amino acid biosynthesis in Bacillus subtilis. J Biol Chem 241:3365-3372Google Scholar
  13. Radaev S, Dastidar P, Patel M, Woodard RW, Gatti DL (2000) Structure and mechanism of 3-deoxy-D-manno-oculosonate 8-phosphate synthase. J Biol Chem 275:9476-9484Google Scholar
  14. Sheflyan GY, Sundaram AK, Taylor WP, Woodard RW (2000) Substrate ambiguity of 3-deoxy-D-manno-octulosonate 8-phosphate synthase from Neisseria gonorrhoeae revisited. J Bacteriol 182: 5005-5008Google Scholar
  15. Shumilin IA, Kretsinger RH, Bauerle RH (1999) Crystal structure of phenylalanine-regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli. Struct Fold Des 7:865- 875Google Scholar
  16. Subramaniam PS, Xie G, Xia T, Jensen RA (1998) Substrate ambiguity of 3-deoxy-D-manno-octulosonate 8-phosphate synthase from Neisseria gonorrhoeae in the context of its membership in a protein family containing a subset of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases. J Bacteriol 180:119-127Google Scholar
  17. Wagner T, Kretsinger RH, Bauerle R, Tolbert WD (2000a) 3-Deoxy- D-manno-octulosonate-8-phosphate synthase from Escherichia coli. Model of binding of phosphoenolpyruvate and D-arabinose- 5-phosphate. J Mol Biol 301:233-238Google Scholar
  18. Wagner T, Shumilin IA, Bauerle R, Kretsinger RH (2000b) Structure of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli: Comparison of the Mn2+ *2-phosphoglycolate and the Pb2+ *2-phosphoenolpyruvate complexes and implications for catalysis. J Mol Biol 301:389-399Google Scholar
  19. Walker GE, Dunbar B, Hunter IS, Nimmo HG, Coggins JR (1996) Evidence for a novel class of microbial 3-deoxy-D-arabinoheptulosonate- 7-phosphate synthase in Streptomyces coelicolor A3(2), Streptomyces rimosus and Neurospora crassa. Microbiology 142:1973–1982PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2002

Authors and Affiliations

  • Roy A. Jensen
    • 1
    • 2
    • 3
    Email author
  • Gary Xie
    • 2
    • 3
  • David H. Calhoun
    • 1
  • Carol A. Bonner
    • 2
  1. 1.Department of ChemistryCity College of New YorkNew YorkUSA
  2. 2.Department of Microbiology and Cell ScienceGainesvilleUSA
  3. 3.BioScience DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations