Regulatory, ethical, and technical considerations on regenerative technologies and adipose-derived mesenchymal stem cells

  • Michele L. ZocchiEmail author
  • Vincenzo Vindigni
  • Andrea Pagani
  • Ortensia Pirro
  • Giamaica Conti
  • Andrea Sbarbati
  • Franco Bassetto
Master Class in Plastic Surgery


Since the early days of molecular biology, organ and tissue regeneration represents a challenging medical goal. However, only recently the advances in the understanding of the cellular components have enabled the promise to become a reality. In this vast panorama of new technologies, stem cells have progressively established themselves as the most effective and user-friendly regenerative therapeutic tool. Scientific meetings, workshops, conferences, and forums focused on translational science of regenerative technologies are today blooming all over the world. The audience questions and, even more, the very often controversial and conflicting explanations highlight the great deal of confusion regarding this new discipline that should be considered today a real independent medical specialty, requiring long-term studies and dedication. All the technologies able to separate and concentrate the adipose tissue (AT) and the stromal vascular fraction (SVF) and their related clinical applications need to comply with a complex but still unclear regulatory frame, becoming everyday more severe and restrictive, this limiting their practical use. The aim of this manuscript is to overview the current status of the regulatory frame and few related ethical considerations and to describe the evolution in the way the adipose-derived stromal vascular fraction (SVF) is isolated, extracted, and concentrated, as well as, of the ongoing researches and related future perspectives. Considerations on the most controversial and still unclear points related to the regenerative medicine and surgery, seen from the perspective of a research group who dedicated their entire professional life to this field, are also provided.

Level of evidence: Not ratable.


Regeneration Cell derivates PRP Adipose tissue (AT) Stromal vascular fraction (SVF) Mesenchymal stem cells (MSCs) Pericytes Growth factors (GFs) Minimal-grade manipulation (MGM) High-grade manipulation (HGM) Lipocondensation Sonication Bioactive composite grafts (BACG) Biocatalyzers MUSE cells Exosomes Photobiomodulation Acellular adipose matrix (AAM) 


Compliance with ethical standards

Funding information

No funds have been received.

Conflict of interest

Michele L. Zocchi, Vincenzo Vindigni, Andrea Pagani, Ortensia Pirr, Giamaica Contio, Andrea Sbarbati, and Franco Bassetto declare that they have no conflict of interest.

Ethical approval

No need of any ethical approval because the topic of the article is mainly related to basic science behind regenerative surgery and no direct action on patients has been taken and referred in the article.

Informed consent

For the abovementioned reasons, no informed consent has been necessary.


  1. 1.
    Illouz Y-G (1986) The fat cell “graft”: a new technique to fill depressions. Plast Reconstr Surg 78(1):122–123PubMedGoogle Scholar
  2. 2.
    Fournier P (1985) Microlipoextraction et microlipoinjection. Rev Chir Esthet Lang Franc 10:36–40Google Scholar
  3. 3.
    Coleman SR (2006) Facial augmentation with structural fat grafting. Clin Plast Surg 33(4):567–577PubMedGoogle Scholar
  4. 4.
    Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118(3S):108S–120SPubMedGoogle Scholar
  5. 5.
    Wells HG (1940) Adipose tissue, a neglected subject. J Am Med Assoc 114(22):2177–2183Google Scholar
  6. 6.
    Cinti S (2000) Anatomy of the adipose organ. Eat Weight Disord 5(3):132–142PubMedGoogle Scholar
  7. 7.
    Lafontan M (2016) The adipose tissue: development, physiology and pathophysiology. Intern Stand Press Book Chapt. 6Google Scholar
  8. 8.
    Caplan AI (2005) Mesenchymal stem cells: cell–based reconstructive therapy in orthopedics. Tissue Eng 11(7–8):1198–1211PubMedGoogle Scholar
  9. 9.
    Caplan AI (1994) The mesengenic process. Clin Plast Surg 21(3):429–435PubMedGoogle Scholar
  10. 10.
    Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650PubMedGoogle Scholar
  11. 11.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Bűhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313PubMedGoogle Scholar
  12. 12.
    Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3(3):229–230PubMedGoogle Scholar
  13. 13.
    Zuk PA, Zhu M, Ashjian P, de Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295PubMedPubMedCentralGoogle Scholar
  14. 14.
    Aust L, Devlin B, Foster SJ, Halvorsen YDC, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6(1):7–14PubMedGoogle Scholar
  15. 15.
    von Heimburg D, Hemmrich K, Haydarlioglu S, Staiger H, Pallua N (2004) Comparison of viable cell yield from excised versus aspirated adipose tissue. Cells Tissues Organs 178(2):87–92Google Scholar
  16. 16.
    Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, Sato K, Inoue K, Nagase T, Koshima I, Gonda K (2006) Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 208(1):64–76PubMedGoogle Scholar
  17. 17.
    Yoshimura K, Suga H, Eto H (2009) Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regen Med 4(2):265–273PubMedGoogle Scholar
  18. 18.
    Rubin JP, DeFail A, Rajendran N, Marra KG (2009) Encapsulation of adipogenic factors to promote differentiation of adipose-derived stem cells. J Drug Target 17(3):207–215PubMedGoogle Scholar
  19. 19.
    Rigotti G, Marchi A, Galié M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119(5):1409–1422PubMedGoogle Scholar
  20. 20.
    Zocchi M (1989) Remodelage facial complet par implants de collagene autologue. Revue Française de Chirurgie Esthétique 14:63Google Scholar
  21. 21.
    Zocchi M (1990) Méthode de production de collagène autologue par traitement du tissu graisseux. Journal de Médecine Esthétique et de Chirurgie Dermatologique 17(66):105–114Google Scholar
  22. 22.
    Zocchi M, Zuliani F (2008) Bicompartmental breast lipostructuring. Aesthet Plast Surg 32(2):313–328Google Scholar
  23. 23.
    Zocchi ML, Zocchi L (2017) Large-volume breast fat transfer: technical evolutions and safety aspects based on over 800 cases and 26 years of follow-up. Eur J Plast Surg 40(5):367–382Google Scholar
  24. 24.
    Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR (1998) Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85(6):638–646PubMedGoogle Scholar
  25. 25.
    Wang H-L, Avila G (2007) Platelet rich plasma: myth or reality? Eur J Dent 1(4):192–194PubMedPubMedCentralGoogle Scholar
  26. 26.
    Zocchi M (1992) Ultrasonic liposculpturing. Aesthet Plast Surg 16(4):287–298Google Scholar
  27. 27.
    Zocchi M (1993) Clinical aspects of ultrasonic liposculpture. Perspect Plast Surg 7(02):153–172Google Scholar
  28. 28.
    Zocchi M (1995) The ultrasonic assisted lipectomy, instructional course. In: Annual meeting of the American Society for Aesthetic Plastic Surgery, San FranciscoGoogle Scholar
  29. 29.
    Zocchi ML (1999) Basic physics for ultrasound-assisted lipoplasty. Clin Plast Surg 26(2):209–220 viiPubMedGoogle Scholar
  30. 30.
    Zocchi M (1989) Les implants mixtes de collagène autologue dans le remodelage facial. Journal de Médecine Esthétique et de Chirurgie Dermatologique 16(63):191–201Google Scholar
  31. 31.
    Zocchi M (2006) New perspectives in plastic surgery: Adiposederived stem cells (ADSC.). In: Abstract Book of the ISAPS World Congress of Rio de Janeiro, AugustGoogle Scholar
  32. 32.
    Oberbauer E et al (2015) Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regen 4(1):7Google Scholar
  33. 33.
    Khan SN, Lane JM (2004) The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in orthopaedic applications. Expert Opin Biol Ther 4(5):741–748PubMedGoogle Scholar
  34. 34.
    Salazar A, Keusgen M, von Hagen J (2016) Amino acids in the cultivation of mammalian cells. Amino Acids 48(5):1161–1171PubMedPubMedCentralGoogle Scholar
  35. 35.
    Büntemeyer H, Lehmann J (2001) The role of vitamins in cell culture media. In: Animal cell technology: from target to market. Springer, Berlin, pp 204–206Google Scholar
  36. 36.
    Fisch SC, Gimeno ML, Phan JD, Simerman AA, Dumesic DA, Perone MJ, Chazenbalk GD (2017) Pluripotent nontumorigenic multilineage differentiating stress enduring cells (Muse cells): a seven-year retrospective. Stem Cell Res Ther 8(1):227PubMedPubMedCentralGoogle Scholar
  37. 37.
    Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M (2013) Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc 8(7):1391–1415PubMedGoogle Scholar
  38. 38.
    Collino F, Pomatto M, Bruno S, Lindoso RS, Tapparo M, Sicheng W, Quesenberry P, Camussi G (2017) Exosome and microvesicle-enriched fractions isolated from mesenchymal stem cells by gradient separation showed different molecular signatures and functions on renal tubular epithelial cells. Stem Cell Rev Rep 13(2):226–243PubMedGoogle Scholar
  39. 39.
    Zhang Y, Yu M, Dai M, Chen C, Tang Q, Jing W, Wang H, Tian W (2017) miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2. J Cell Sci 130(6):1158–1168PubMedGoogle Scholar
  40. 40.
    Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT (2010) Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One 5(1):e8577PubMedPubMedCentralGoogle Scholar
  41. 41.
    Admyre C, Johansson SM, Qazi KR, Filén JJ, Lahesmaa R, Norman M, Neve EPA, Scheynius A, Gabrielsson S (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179(3):1969–1978PubMedGoogle Scholar
  42. 42.
    Keller S, Rupp C, Stoeck A, Runz S, Fogel M, Lugert S, Hager HD, Abdel-Bakky MS, Gutwein P, Altevogt P (2007) CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int 72(9):1095–1102PubMedGoogle Scholar
  43. 43.
    Caby M-P, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887PubMedGoogle Scholar
  44. 44.
    Pisitkun T, Shen R-F, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci 101(36):13368–13373PubMedGoogle Scholar
  45. 45.
    Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593PubMedGoogle Scholar
  46. 46.
    Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7(3):297–303PubMedGoogle Scholar
  47. 47.
    Skokos D, Botros HG, Demeure C, Morin J, Peronet R, Birkenmeier G, Boudaly S, Mécheri S (2003) Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 170(6):3037–3045PubMedGoogle Scholar
  48. 48.
    Théry C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1999) Molecular characterization of dendritic cell-derived exosomes: selective accumulation of the heat shock protein hsc73. J Cell Biol 147(3):599–610PubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhou Y, Zhou G, Tian C, Jiang W, Jin L, Zhang C, Chen X (2016) Exosome-mediated small RNA delivery for gene therapy. Wiley Interdiscip Rev RNA 7(6):758–771PubMedGoogle Scholar
  50. 50.
    Mead B, Tomarev S (2017) Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med 6(4):1273–1285PubMedPubMedCentralGoogle Scholar
  51. 51.
    Stahl PD, Barbieri MA (2002) Multivesicular bodies and multivesicular endosomes: the “ins and outs” of endosomal traffic. Sci Signal 2002(141):pe32Google Scholar
  52. 52.
    Rong L et al (2016) Immunosuppression of breast cancer cells mediated by transforming growth factor-β in exosomes from cancer cells. Oncol Lett 11(1):500–504PubMedGoogle Scholar
  53. 53.
    Panich T, Chancharoenthana W, Somparn P, Issara-Amphorn J, Hirankarn N, Leelahavanichkul A (2017) Urinary exosomal activating transcriptional factor 3 as the early diagnostic biomarker for sepsis-induced acute kidney injury. BMC Nephrol 18(1):10PubMedPubMedCentralGoogle Scholar
  54. 54.
    Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15PubMedPubMedCentralGoogle Scholar
  55. 55.
    Pittenger M (2009) Sleuthing the source of regeneration by MSCs. Cell Stem Cell 5(1):8–10PubMedGoogle Scholar
  56. 56.
    Kusindarta DL, Wihadmadyatami H, Fibrianto YH, Nugroho WS, Susetya H, Musana DK, Wijayanto H, Prihatna SA, Wahyuni AETH (2016) Human umbilical mesenchymal stem cells conditioned medium promote primary wound healing regeneration. Vet World 9(6):605–610PubMedPubMedCentralGoogle Scholar
  57. 57.
    Jing H, He X, Zheng J (2018) Exosomes and regenerative medicine: state of the art and perspectives. Transl Res 196:1–16PubMedGoogle Scholar
  58. 58.
    Wu P, Zhang B, Shi H, Qian H, Xu W (2018) MSC-exosome: a novel cell-free therapy for cutaneous regeneration. Cytotherapy 20(3):291–301PubMedGoogle Scholar
  59. 59.
    Lafontan M (2014) Adipose tissue and adipocyte dysregulation. Diabetes Metab 40:16–28PubMedGoogle Scholar
  60. 60.
    Illouz Y-GS, Stereodimas A (2011) Adipose stem cells and regenerative medicine. Springer, BerlinGoogle Scholar
  61. 61.
    Wu I, Nahas Z, Kimmerling KA, Rosson GD, Elisseeff JH (2012) An injectable adipose matrix for soft tissue reconstruction. Plast Reconstr Surg 129(6):1247–1257PubMedPubMedCentralGoogle Scholar
  62. 62.
    Fu R-H, Wang YC, Liu SP, Shih TR, Lin HL, Chen YM, Sung JH, Lu CH, Wei JR, Wang ZW, Huang SJ, Tsai CH, Shyu WC, Lin SZ (2014) Decellularization and recellularization technologies in tissue engineering. Cell Transplant 23(4–5):621–630PubMedGoogle Scholar
  63. 63.
    Bao H (2009) Decellularized human amniotic membrane. J Biotech 7Google Scholar
  64. 64.
    Bao H (2014) Method of decellularization of porcine cancellous bone. Int J Life Sci Med Res 4:38–45Google Scholar
  65. 65.
    Bao H (2016) Decellularized porcine pericardium for clinical applications. Turk J Biol 10(3906):1510–1544Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.C.S.M. Institute for Regenerative SurgeryTurinItaly
  2. 2.Institute of Plastic and Reconstructive Surgery of the University of PaduaPaduaItaly
  3. 3.Institute of Human AnatomyUniversity of VeronaVeronaItaly

Personalised recommendations