Advertisement

Acta Informatica

, Volume 33, Issue 4, pp 387–408 | Cite as

Parallel Approximation Schemes for problems on planar graphs

  • J. Díaz
  • M. J. Serna
  • J. Torán
Article

Abstract

This paper describes a technique to obtain NC Approximations Schemes for the Maximum Independent Set in planar graphs and related optimization problems. The strategy consists in decomposing the graph into K-outerplanar subgraphs and solve for each K-outerplanar using tree contraction techniques.

Keywords

Maximum Match Tree Representation Virtual Node Outerplanar Graph Parallel Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ADKP89]
    Abrahamson, K., Dadoun, N., Kirkpatrick, D., Przytycka, K.: A simple parallel tree contraction algorithm. J. Algorithms, 10, 287–302 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [AM86]
    Anderson, R.J., Mayr, E.W.: Approximating P-complete problems. Technical report, Stanford University, 1986.Google Scholar
  3. [Bak83]
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. In: 24th Ann. IEEE Symp. on Foundations of Computer Science, pp. 265–273, 1983Google Scholar
  4. [Bak94]
    Baker, B.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)zbMATHCrossRefGoogle Scholar
  5. [BP92]
    Bui, T.N., Peck, A.: Partitioning planar graphs. SIAM J. Comput. 21, 203–215 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [CN89]
    Chrobak, M., Naor, J.: An efficient parallel algorithm for computing large independent set in a planar graph. In: First Ann. ACM Symp. on Parallel Algorithms and Architectures, pp. 379–387. New York: Assoc. Comput. Machinery 1989CrossRefGoogle Scholar
  7. [Coh92]
    Cohen, E.: Approximate max flow on small depth networks. In: 33rd Ann. IEEE Symp. on Foundations of Computer Science, pp. 648–658, 1992Google Scholar
  8. [GJ79]
    Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. San Francisco: Freeman 1979zbMATHGoogle Scholar
  9. [Hag90]
    Hagerup, T.: Planar depth-first search in log n parallel time. SIAM J. Comp. 19, 678–703 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [HCS79]
    Hirschberg, D.S., Chandra, A.K., Sarwate, D.V.: Computing connected components on parallel computers. Comm. ACM 22, 461–464 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [JaJ92]
    JaJa, J.: An introduction to parallel algorithms. Reading, MA: Addison-Wesley 1992zbMATHGoogle Scholar
  12. [Kan92]
    Kann, V.: On the approximability of NP-complete optimization problems. Ph.D. Thesis, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, Sweden, 1992Google Scholar
  13. [KH94]
    Kant, G., Xin He: Two algorithms for finding rectangular duals of planar graphs. In: Proc. 19th Int. Workshop on Graph-Theoretic Concepts in Computer Science (Lect. Notes Comput. Sci., Vol. 790, pp. 411–424) Berlin, Heidelberg, New York: Springer 1994Google Scholar
  14. [KR90]
    Karp, R., Ramachandran, V.: Parallel algorithms for shared memory machines. In: Jan van Leeuwen (ed.) Handbook of theoretical computer science, Vol. A, pp. 869–942, Amsterdam: Elsevier 1990Google Scholar
  15. [KSS93]
    Kirousis, L.M., Serna, M.J., Spirakis, P.: The parallel complexity of the connected subgraph problem. SIAM J. Comput. 22, 573–586 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [KR86]
    Klein, P.H, Reif, J.H.: An efficient parallel algorithm for planarity. In: 27th Ann. IEEE Symp. on Foundations of Computer Science, pp. 465–477, 1986Google Scholar
  17. [KS93]
    Klein, P., Stein, C.: A parallel algorithm for approximating the minimum cycle cover. Algorithmica 9, 23–31 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [LN92]
    Luby, M., Nisan, N.: A parallel approximation algorithm for positive linear programming. Technical report, International Computer Science Institute. Berkeley 1992Google Scholar
  19. [NC88]
    Nishizeki, T., Chiba, N.: Planar graphs: theory and algorithms. Amsterdam: North-Holland, 1988zbMATHGoogle Scholar
  20. [PR87]
    Peters, J.G., Rudolph, L.: Parallel aproximation schemes for subset sum and knapsack problems. Acta Inf. 24, 417–432 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [RR89]
    Ramachandran, V., Reif, J.: An optimal parallel algorithm for graph planarity. In 30th Ann. IEEE Symp. on Foundations of Computer Science, pp 282–287, 1989Google Scholar
  22. [Ser90]
    Serna, M.J.: The parallel approximability of P-complete problems. Ph.D. thesis, Universitat Politecnica de Catalunya, 1990Google Scholar
  23. [Ser91]
    Serna, M.J.: Approximating linear programming is log-space complete for P. Inform. Process. Lett. 37, 233–236 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  24. [SS89]
    Serna, M.J., Spirakis, P.: The approximability of problems complete for P. In: Proc. on Optimal Algorithms. (Lect. Notes Comput. Sci., vol. 401, pp. 193–204) Berlin, Heidelberg, New York: Springer 1989Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. Díaz
    • 1
  • M. J. Serna
    • 1
  • J. Torán
    • 1
  1. 1.Departament de Llenguatges i SistemesUniversitat Politècnica CatalunyaBarcelonaSpain

Personalised recommendations