Advertisement

A formal methods approach to predicting new features of the eukaryotic vesicle traffic system

  • Arnab Bhattacharyya
  • Ashutosh Gupta
  • Lakshmanan Kuppusamy
  • Somya Mani
  • Ankit ShuklaEmail author
  • Mandayam Srivas
  • Mukund Thattai
Original Article

Abstract

Vesicle traffic systems (VTSs) transport cargo among the intracellular compartments of eukaryotic cells. The compartments are viewed as nodes that are labeled by their chemical identity and the transport vesicles are similarly viewed as labeled edges between the nodes. Several interesting questions about VTSs translate to combinatorial search and synthesis problems. We present novel encodings for the problems based on Boolean satisfiability (SAT), satisfiability modulo theories and quantified Boolean formula of the properties over vesicle traffic systems. We have implemented the presented encodings in a tool that searches for the networks that satisfy properties related to transport consistency conditions using these solvers. In our numerical experiments, we show that our tool can search for networks of sizes that are relevant to real cellular systems. Our work illustrates the potential of novel biological applications of SAT solving technology.

Notes

Supplementary material

References

  1. 1.
    Alberts, B., Johnson, A., Lewis, J., Walter, P., Raff, M., Roberts, K.: Molecular biology of the cell 4th edition: international student edition. Routledge (2002). https://books.google.at/books?id=ozigkQEACAAJ
  2. 2.
    Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A., Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: 2013 Formal Methods in Computer-Aided Design, IEEE, pp. 1–8 (2013)Google Scholar
  3. 3.
    Baker, R.W., Hughson, F.M.: Chaperoning snare assembly and disassembly. Nat. Rev. Mol. Cell Biol. 17(8), 465 (2016)CrossRefGoogle Scholar
  4. 4.
    Barlow, L., Dacks, J.: Seeing the endomembrane system for the trees: evolutionary analysis highlights the importance of plants as models for eukaryotic membrane-trafficking. In: Seminars in cell & developmental biology. Elsevier (2017)Google Scholar
  5. 5.
    Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model Checking, pp. 305–343. Springer (2018)Google Scholar
  6. 6.
    Benedetti, M., Mangassarian, H.: Qbf-based formal verification: experience and perspectives. J. Satisf. Boolean Model. Comput. 5, 133–191 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bexiga, M.G., Simpson, J.C.: Human diseases associated with form and function of the golgi complex. Int. J. Mol. Sci. 14(9), 18670–18681 (2013)CrossRefGoogle Scholar
  8. 8.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 193–207. Springer (1999)Google Scholar
  9. 9.
    Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using sat procedures instead of bdds. In: Proceedings of the 36th Annual ACM/IEEE Design Automation Conference, pp. 317–320. ACM (1999)Google Scholar
  10. 10.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Adv. Comput. 58, 117–148 (2003)CrossRefGoogle Scholar
  11. 11.
    Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS press, Amsterdam (2009)zbMATHGoogle Scholar
  12. 12.
    Biere, A., Heule, M., van Maaren, H., Walsh, T.: Conflict-driven clause learning sat solvers. Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, pp. 131–153 (2009)Google Scholar
  13. 13.
    Bjesse, P., Leonard, T., Mokkedem, A.: Finding bugs in an alpha microprocessor using satisfiability solvers. In: International Conference on Computer Aided Verification, pp. 454–464. Springer (2001)Google Scholar
  14. 14.
    Braell, W.A., Balch, W.E., Dobbertin, D.C., Rothman, J.E.: The glycoprotein that is transported between successive compartments of the golgi in a cell-free system resides in stacks of cisternae. Cell 39(3), 511–524 (1984)CrossRefGoogle Scholar
  15. 15.
    Büning, H.K., Bubeck, U.: Theory of quantified boolean formulas. Handb. Satisf. 185, 735–760 (2009)Google Scholar
  16. 16.
    Burri, L., Lithgow, T.: A complete set of snares in yeast. Traffic 5(1), 45–52 (2004)CrossRefGoogle Scholar
  17. 17.
    Cardelli, L., Češka, M., Fränzle, M., Kwiatkowska, M., Laurenti, L., Paoletti, N., Whitby, M.: Syntax-guided optimal synthesis for chemical reaction networks. In: International Conference on Computer Aided Verification, pp. 375–395. Springer (2017)Google Scholar
  18. 18.
    Chin, G., Chavarria, D.G., Nakamura, G.C., Sofia, H.J.: Biographe: high-performance bionetwork analysis using the biological graph environment. BMC Bioinf. 9(6), S6 (2008)CrossRefGoogle Scholar
  19. 19.
    Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: TACAS, pp. 168–176. Springer (2004)Google Scholar
  20. 20.
    Cocucci, E., Gaudin, R., Kirchhausen, T.: Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit. Mol. Biol. Cell 25(22), 3595–3609 (2014)CrossRefGoogle Scholar
  21. 21.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM (1971)Google Scholar
  22. 22.
    de Moura, L., Bjorner, N.: Z3: An efficient smt solver. In: TACAS, LNCS, vol. 4963, pp. 337–340. Springer Berlin Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78800-3_24 CrossRefGoogle Scholar
  23. 23.
    de Moura, L.M., Bjørner, N.: Efficient e-matching for SMT solvers. In: Automated Deduction—CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany, July 17–20, 2007, Proceedings, vol. 4603, pp. 183–198. Springer (2007)Google Scholar
  24. 24.
    Dacks, J.B., Field, M.C.: Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J. Cell Sci. 120(17), 2977–2985 (2007)CrossRefGoogle Scholar
  25. 25.
    Davletov, B., Connell, E., Darios, F.: Regulation of snare fusion machinery by fatty acids. Cell. Mol. Life Sci. 64(13), 1597–1608 (2007)CrossRefGoogle Scholar
  26. 26.
    De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer (2008)Google Scholar
  27. 27.
    Di Giovanni, J., Iborra, C., Maulet, Y., Lévêque, C., El Far, O., Seagar, M.: Calcium-dependent regulation of snare-mediated membrane fusion by calmodulin. J. Biol. Chem. 285, Jbc-M109 (2010)Google Scholar
  28. 28.
    Dunn, S.J., Martello, G., Yordanov, B., Emmott, S., Smith, A.: Defining an essential transcription factor program for naive pluripotency. Science 344(6188), 1156–1160 (2014)CrossRefGoogle Scholar
  29. 29.
    Faini, M., Beck, R., Wieland, F.T., Briggs, J.A.: Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol. 23(6), 279–288 (2013)CrossRefGoogle Scholar
  30. 30.
    Fisher, J., Köksal, A.S., Piterman, N., Woodhouse, S.: Synthesising executable gene regulatory networks from single-cell gene expression data. In: International Conference on Computer Aided Verification, pp. 544–560. Springer (2015)Google Scholar
  31. 31.
    Fries, E., Rothman, J.E.: Transient activity of golgi-like membranes as donors of vesicular stomatitis viral glycoprotein in vitro. J. Cell Biol. 90(3), 697–704 (1981)CrossRefGoogle Scholar
  32. 32.
    Furukawa, N., Mima, J.: Multiple and distinct strategies of yeast snares to confer the specificity of membrane fusion. Sci. Rep. 4, 4277 (2014)CrossRefGoogle Scholar
  33. 33.
    Giacobbe, M., Guet, C.C., Gupta, A., Henzinger, T.A., Paixao, T., Petrov, T.: Model checking gene regulatory networks. In: TACAS (2015)Google Scholar
  34. 34.
    Gissen, P., Maher, E.R.: Cargos and genes: insights into vesicular transport from inherited human disease. J. Med. Genet. 44(9), 545–555 (2007)CrossRefGoogle Scholar
  35. 35.
    Goldberg, E.I., Prasad, M.R., Brayton, R.K.: Using sat for combinational equivalence checking. In: Design, Automation and Test in Europe, 2001. Conference and Exhibition 2001. Proceedings, pp. 114–121. IEEE (2001)Google Scholar
  36. 36.
    Gomes, C.P., Selman, B., McAloon, K., Tretkoff, C.: Randomization in backtrack search: exploiting heavy-tailed profiles for solving hard scheduling problems. In: AIPS, pp. 208–213 (1998)Google Scholar
  37. 37.
    Gubbels, M.J., Duraisingh, M.T.: Evolution of apicomplexan secretory organelles. Int. J. Parasitol. 42(12), 1071–1081 (2012)CrossRefGoogle Scholar
  38. 38.
    Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfiability. In: PPCP, pp. 941–956. Springer (2012)Google Scholar
  39. 39.
    Gulwani, S.: Automating string processing in spreadsheets using input-output examples. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26–28, 2011, pp. 317–330. ACM (2011)Google Scholar
  40. 40.
    Gupta, A., Mani, S., Shukla, A.: Synthesis for vesicle traffic systems. In: Češka, M., Šafránek, D. (eds.) Computational Methods in Systems Biology, pp. 93–110. Springer, Cham (2018)zbMATHCrossRefGoogle Scholar
  41. 41.
    Gupta, A., Shukla, A., Srivas, M., Thattai, M.: Smt solving for vesicle traffic systems in cells. In: SASB (2017)Google Scholar
  42. 42.
    He, Y., Linder, M.E.: Differential palmitoylation of the endosomal snares syntaxin 7 and syntaxin 8. J. Lipid Res. 50(3), 398–404 (2009)CrossRefGoogle Scholar
  43. 43.
    Heule, M., Verwer, S.: Exact dfa identification using sat solvers. Grammatical inference: theoretical results and applications pp. 66–79 (2010)Google Scholar
  44. 44.
    Hirst, J., Miller, S.E., Taylor, M.J., von Mollard, G.F., Robinson, M.S.: Epsinr is an adaptor for the snare protein vti1b. Mol. Biol. Cell 15(12), 5593–5602 (2004)CrossRefGoogle Scholar
  45. 45.
    Jena, B.P.: Intracellular organelle dynamics at nm resolution. Methods Cell Biol. 90, 19–37 (2008)CrossRefGoogle Scholar
  46. 46.
    Jussila, T., Biere, A.: Compressing bmc encodings with qbf. Electron. Notes Theor. Comput. Sci. 174(3), 45–56 (2007)zbMATHCrossRefGoogle Scholar
  47. 47.
    Kahn, R.A.: Toward a model for arf gtpases as regulators of traffic at the golgi. FEBS Lett. 583(23), 3872–3879 (2009)CrossRefGoogle Scholar
  48. 48.
    Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic search. In: Proceedings of the National Conference on Artificial Intelligence, pp. 1194–1201 (1996)Google Scholar
  49. 49.
    Koksal, A.S., Pu, Y., Srivastava, S., Bodik, R., Fisher, J., Piterman, N.: Synthesis of biological models from mutation experiments. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, pp. 469–482. ACM, New York, NY, USA (2013).  https://doi.org/10.1145/2429069.2429125
  50. 50.
    Lodish, H., Darnell, J.E., Berk, A., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H., Matsudaira, P., et al.: Molecular Cell Biology. Macmillan, Basingtoke (2008)Google Scholar
  51. 51.
    Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver. J. Satisf. Boolean Model. Comput. 7, 71–76 (2010)Google Scholar
  52. 52.
    Mangla, K., Dill, D.L., Horowitz, M.A.: Timing robustness in the budding and fission yeast cell cycles. PLoS One 5(2), e8906 (2010)CrossRefGoogle Scholar
  53. 53.
    Mani, S., Thattai, M.: Stacking the odds for golgi cisternal maturation. Elife 5, e16,231 (2016)CrossRefGoogle Scholar
  54. 54.
    McNew, J.A., Parlati, F., Fukuda, R., Johnston, R.J., Paz, K., Paumet, F., Söllner, T.H., Rothman, J.E.: Compartmental specificity of cellular membrane fusion encoded in snare proteins. Nature 407(6801), 153 (2000)CrossRefGoogle Scholar
  55. 55.
    Mima, J., Hickey, C.M., Xu, H., Jun, Y., Wickner, W.: Reconstituted membrane fusion requires regulatory lipids, snares and synergistic snare chaperones. EMBO J. 27(15), 2031–2042 (2008)CrossRefGoogle Scholar
  56. 56.
    Mishev, K., Dejonghe, W., Russinova, E.: Small molecules for dissecting endomembrane trafficking: a cross-systems view. Chem. Biol. 20(4), 475–486 (2013)CrossRefGoogle Scholar
  57. 57.
    Müller, M.P., Goody, R.S.: Molecular control of rab activity by gefs, gaps and gdi. Small GTPases 9(1–2), 5–21 (2018)CrossRefGoogle Scholar
  58. 58.
    Munro, S.: Organelle identity and the organization of membrane traffic. Nat. Cell Biol. 6(6), 469–472 (2004)CrossRefGoogle Scholar
  59. 59.
    Nakatsukasa, K., Kanada, A., Matsuzaki, M., Byrne, S.D., Okumura, F., Kamura, T.: The nutrient stress-induced small gtpase rab5 contributes to the activation of vesicle trafficking and vacuolar activity. J. Biol. Chem. 289, jbc-M114 (2014)CrossRefGoogle Scholar
  60. 60.
    Nickel, W., Rabouille, C.: Unconventional protein secretion: Diversity and consensus. In: Seminars in cell & developmental biology. Elsevier (2018)Google Scholar
  61. 61.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving sat and sat modulo theories: from an abstract davis-putnam-logemann-loveland procedure to dpll (t). J. ACM (JACM) 53(6), 937–977 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Paczkowski, J.E., Richardson, B.C., Fromme, J.C.: Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis. Trends Cell Biol. 25(7), 408–416 (2015)CrossRefGoogle Scholar
  63. 63.
    Paoletti, N., Yordanov, B., Hamadi, Y., Wintersteiger, C.M., Kugler, H.: Analyzing and synthesizing genomic logic functions. In: International Conference on Computer Aided Verification, pp. 343–357. Springer (2014)Google Scholar
  64. 64.
    Polishchuk, R., Mironov, A.: Structural aspects of golgi function. Cell. Mol. Life Sci. CMLS 61(2), 146–158 (2004)CrossRefGoogle Scholar
  65. 65.
    Progida, C., Bakke, O.: Bidirectional traffic between the golgi and the endosomes-machineries and regulation. J. Cell Sci. 129(21), 3971–3982 (2016)Google Scholar
  66. 66.
    Qbflib.org: QDIMACS standard ver. 1.1. (2018). http://www.qbflib.org/qdimacs.html
  67. 67.
    Richardson, E., Zerr, K., Tsaousis, A., Dorrell, R.G., Dacks, J.B.: Evolutionary cell biology: functional insight from “endless forms most beautiful”. Mol. Biol. Cell 26(25), 4532–4538 (2015)CrossRefGoogle Scholar
  68. 68.
    Rink, J., Ghigo, E., Kalaidzidis, Y., Zerial, M.: Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5), 735–749 (2005)CrossRefGoogle Scholar
  69. 69.
    Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic control. Am. Math. Mon. 46(5), 281–283 (1939)zbMATHCrossRefGoogle Scholar
  70. 70.
    Rosenblueth, D.A., Muñoz, S., Carrillo, M., Azpeitia, E.: Inference of boolean networks from gene interaction graphs using a sat solver. In: ICACB, pp. 235–246. Springer (2014)Google Scholar
  71. 71.
    Rothman, J.E.: The machinery and principles of vesicle transport in the cell. Nat. Med. 8(10), 1059–1063 (2002)CrossRefGoogle Scholar
  72. 72.
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Shavit, Y., Yordanov, B., Dunn, S.J., Wintersteiger, C.M., Otani, T., Hamadi, Y., Livesey, F.J., Kugler, H.: Automated synthesis and analysis of switching gene regulatory networks. Biosystems 146, 26–34 (2016)CrossRefGoogle Scholar
  74. 74.
    Shimizu, H., Woodcock, S.A., Wilkin, M.B., Trubenová, B., Monk, N.A., Baron, M.: Compensatory flux changes within an endocytic trafficking network maintain thermal robustness of notch signaling. Cell 157(5), 1160–1174 (2014)CrossRefGoogle Scholar
  75. 75.
    Shukla, A., Bhattacharyya, A., Kuppusamy, L., Srivas, M., Thattai, M.: Discovering vesicle traffic network constraints by model checking. PloS one 12(7), e0180,692 (2017)CrossRefGoogle Scholar
  76. 76.
    Solar-Lezama, A.: The sketching approach to program synthesis. In: Programming Languages and Systems, 7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14–16, 2009. Proceedings, pp. 4–13. Springer (2009)Google Scholar
  77. 77.
    Soos, M.: The cryptominisat 5 set of solvers at sat competition 2016. SAT Compet. 2016, 28 (2016)Google Scholar
  78. 78.
    Sorensson, N., Een, N.: Minisat v1. 13-a sat solver with conflict-clause minimization. SAT 2005(53), 1–2 (2005)Google Scholar
  79. 79.
    Stenmark, H.: Rab gtpases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10(8), 513–525 (2009)CrossRefGoogle Scholar
  80. 80.
    Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Combinational test generation using satisfiability. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 15(9), 1167–1176 (1996)CrossRefGoogle Scholar
  81. 81.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (preliminary report). In: Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, pp. 1–9. ACM (1973)Google Scholar
  82. 82.
    Stoops, E.H., Caplan, M.J.: Trafficking to the apical and basolateral membranes in polarized epithelial cells. J. Am. Soc. Nephrol. 25(7), 1375–1386 (2014)CrossRefGoogle Scholar
  83. 83.
    Tang, D., Wang, Y.: Cell cycle regulation of golgi membrane dynamics. Trends Cell Biol. 23(6), 296–304 (2013)CrossRefGoogle Scholar
  84. 84.
    Velev, M.N., Bryant, R.E.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and vliw microprocessors. J. Symb. Comput. 35(2), 73–106 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M., Parlati, F., Söllner, T.H., Rothman, J.E.: Snarepins: minimal machinery for membrane fusion. Cell 92(6), 759–772 (1998)CrossRefGoogle Scholar
  86. 86.
    Weill, U., Arakel, E.C., Goldmann, O., Golan, M., Chuartzman, S., Munro, S., Schwappach, B., Schuldiner, M.: Toolbox: creating a systematic database of secretory pathway proteins uncovers new cargo for copi. Traffic 19(5), 370–379 (2018)CrossRefGoogle Scholar
  87. 87.
    Wells, W.A.: The discovery of synaptic vesicles (2005)Google Scholar
  88. 88.
    Yoon, T.Y., Munson, M.: Snare complex assembly and disassembly. Curr. Biol. 28(8), R397–R401 (2018)CrossRefGoogle Scholar
  89. 89.
    Yordanov, B., Dunn, S.J., Kugler, H., Smith, A., Martello, G., Emmott, S.: A method to identify and analyze biological programs through automated reasoning. NPJ Syst. Biol. Appl. 2, 16,010 (2016)CrossRefGoogle Scholar
  90. 90.
    Yordanov, B., Wintersteiger, C.M., Hamadi, Y., Kugler, H.: Smt-based analysis of biological computation. In: NASA Formal Methods Symposium, pp. 78–92. Springer (2013)Google Scholar
  91. 91.
    Zerial, M., McBride, H.: Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2(2), 107 (2001)CrossRefGoogle Scholar
  92. 92.
    Zhou, K., Sumigray, K.D., Lechler, T.: The arp2/3 complex has essential roles in vesicle trafficking and transcytosis in the mammalian small intestine. Mol. Biol. Cell 26(11), 1995–2004 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NUS School of Computing, National University of SingaporeSingaporeSingapore
  2. 2.IIT BombayMumbaiIndia
  3. 3.School of Computer Science and EngineeringVITVelloreIndia
  4. 4.IBS-CSLMUlsanRepublic of Korea
  5. 5.Johannes Kepler UniversityLinzAustria
  6. 6.Chennai Mathematical InstituteChennaiIndia
  7. 7.Simons Centre for the Study of Living Machines, NCBS-TIFRBengaluruIndia

Personalised recommendations