Advertisement

Coupled similarity: the first 32 years

  • Benjamin Bisping
  • Uwe Nestmann
  • Kirstin PetersEmail author
Original Article
  • 13 Downloads

Abstract

Coupled similarity is an equivalence on (labeled) transition systems; its distinguishing power lies between (weak) bisimilarity and (may) testing equivalence. Its main feature, compared to weak bisimilarity, is an additional \(\tau \)-law that abstracts from the atomicity of internal choices among several possible branches, thus allowing for gradual commitments. The need for this \(\tau \)-law in applications was motivated by van Glabbeek and Vaandrager in 1988. Parrow and Sjödin coined the term coupled simulation in 1992 as a coinductive proof technique for the comparison of distributed (not “just” concurrent) systems, heavily exploiting gradual commitments. Over the years, coupled similarity also gained significance for the definition and analysis of the correctness of encodings, of action refinement and contraction, and of branching-time semantics for various process calculi. In this paper, we compare variants and formalizations of coupled similarity and highlight its relevance.

Notes

References

  1. 1.
    Aceto, L., van Glabbeek, R., Fokkink, W., Ingólfsdóttir, A.: Axiomatizing prefix iteration with silent steps. Inf. Comput. 127(1), 26–40 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Agha, G., Thati, P.: An algebraic theory of actors and its application to a simple object-based language. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. Essays in Memory of Ole-Johan Dahl, LNCS, vol. 2635, pp. 26–57. Springer, Berlin (2004)CrossRefGoogle Scholar
  3. 3.
    Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous \(\pi \)-calculus. Theor. Comput. Sci. 195(2), 291–324 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baeten, J.C.M.: A brief history of process algebra. Theor. Comput. Sci. 335(2–3), 131–146 (2005).  https://doi.org/10.1016/j.tcs.2004.07.036 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bouajjani, A., Fernandez, J.C., Graf, S., Rodriguez, C., Sifakis, J.: Safety for branching time semantics. In: Albert, J.L. (Hrsg.), Monien, B. (Hrsg.), Rodríguez-Artalejo, M. (Hrsg.) (eds.) Proceedings of ICALP, LNCS, vol. 510, pp. 76–92. Springer (1991)Google Scholar
  6. 6.
    Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. J. ACM 31(3), 560–599 (1984)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bisping, B.: Computing coupled similarity. Technische Universität Berlin, Diplomarbeit (2018). https://coupledsim.bbisping.de/bisping_computingCoupledSimilarity_thesis.pdf. Accessed 15 Nov 2019
  8. 8.
    Bisping, B.: Isabelle/HOL proof and apache flink program for TACAS 2019 paper: computing coupled similarity. Figshare 3 (2019). https://doi.org/10.6084/m9.figshare.7831382.v1
  9. 9.
    Bisping, B., Nestmann, U.: Computing coupled similarity. In: Proceedings of TACAS, LNCS, pp. 244–261. Springer (2019)Google Scholar
  10. 10.
    Boudol, G.: Asynchrony and the \(\pi \)-calculus (Note)/INRIA Sophia-Antipolis version (1992). https://hal.inria.fr/inria-00076939/document. 1992 (1702). Rapport de Recherche
  11. 11.
    Brookes, S.D.: On the relationship of CCS and CSP. In: Proceedings of ICALP, LNCS, pp. 83–96. Springer (1983)Google Scholar
  12. 12.
    Derrick, J., Dongol, B., Schellhorn, G., Tofan, B., Travkin, O., Wehrheim, H.: Quiescent consistency: defining and verifying relaxed linearizability. In: FM 2014: Formal Methods-19th International Symposium, Singapore, May 12–16 2014, Proceedings. Lecture Notes in Computer Science, vol. 8442, pp. 200–214. Springer (2014). ISBN 978-3-319-06409-3Google Scholar
  13. 13.
    Deng, Y.: A simple completeness proof for the axiomatisations of weak behavioural equivalences. Bull. EATCS 93, 207–219 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Derrick, J., Wehrheim, H.: Using coupled simulations in non-atomic refinement. In: International Conference of B and Z Users, LNCS, vol. 2651, pp. 127–147. Springer (2003)Google Scholar
  15. 15.
    Dsouza, A., Bloom, B.: On the expressive power of CCS. In: Proceedings of FSTTCS, LNCS, pp. 309–323. Springer (1995)Google Scholar
  16. 16.
    Evrard, H., Lang, F.: Formal verification of distributed branching multiway synchronisation protocols. In: Proceedings of FMOODS/FORTE, pp. 146–160. Springer (2013)Google Scholar
  17. 17.
    Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the join-calculus. In: Steele, Jr. G. (Hrsg.), ACM (Veranst.) Proceedings of POPL ’96 ACM, pp. 372–385. Springer (1996)Google Scholar
  18. 18.
    Fournet, C., Gonthier, G.: The join calculus: a language for distributed mobile programming. In: Applied Semantics, International Summer School, APPSEM 2000, Caminha, Portugal, Sep 9–15 2000, Advanced Lectures (LNCS), vol. 2395, pp. 268–332. Springer (2002)Google Scholar
  19. 19.
    Fournet, C., Gonthier, G.: A hierarchy of equivalences for asynchronous calculi. J. Log. Algebr. Program. 63(1), 131–173 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fu, Y., Lu, H.: On the expressiveness of interaction. Theor. Comput. Sci. 411(11–13), 1387–1451 (2010).  https://doi.org/10.1016/j.tcs.2009.11.011 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. Int. J. Softw. Tool Technol. Transf. 15(2), 89–107 (2013)CrossRefGoogle Scholar
  22. 22.
    Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P. (Hrsg.), Langerak, R. (Hrsg.), Rensink, A. (Hrsg.) ModelEd, TestEd, TrustEd—Essays Dedicated to Ed Brinksma on the Occasion of His 60th Birthday, Lecture Notes in Computer Science, vol. 10500, pp. 3–26. Springer (2017). ISBN 978-3-319-68269-3Google Scholar
  23. 23.
    Gorla, D., Nestmann, U.: Full abstraction for expressiveness: history, myths and facts. Math. Struct. Comput. Sci. 26(4), 639–654 (2016).  https://doi.org/10.1017/S0960129514000279 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gorla, D.: Towards a unified approach to encodability and separation results for process calculi. Inf. Comput. 208(9), 1031–1053 (2010).  https://doi.org/10.1016/j.ic.2010.05.002 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gorrieri, R., Rensink, A.: Action refinement. Version: 2001. In: Bergstra, J.A. (Hrsg.), Ponse, A. (Hrsg.), Smolka, S.A. (Hrsg.) Handbook of Process Algebra, pp. 1047–1147. North-Holland/Elsevier (2001).  https://doi.org/10.1016/b978-044482830-9/50034-5. ISBN 978-0-444-82830-9CrossRefGoogle Scholar
  26. 26.
    Glabbeek, R.J.: A branching time model of CSP. Version: 2017. In: Gibson-Robinson, T. (Hrsg.), Hopcroft, P. (Hrsg.), Lazić, R. (Hrsg.) Concurrency, Security, and Puzzles: Essays Dedicated to Andrew William Roscoe on the Occasion of His 60th Birthday, pp. 272–293. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51046-0_14. ISBN 978-3-319-51046-0Google Scholar
  27. 27.
    Glabbeek, R.J.: The linear time-branching time spectrum II. In: International Conference on Concurrency Theory, pp. 66–81. Springer (1993)Google Scholar
  28. 28.
    Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for concurrent systems. Acta Inf. 37(4/5), 229–327 (2001).  https://doi.org/10.1007/s002360000041 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996).  https://doi.org/10.1145/233551.233556 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hatzel, M., Wagner, C., Peters, K., Nestmann, U.: Encoding CSP into CCS. In: Proceedings of the Combined 22th International Workshop on Expressiveness in Concurrency and 12th Workshop on Structural Operational Semantics, and 12th Workshop on Structural Operational Semantics, EXPRESS/SOS, pp. 61–75 (2015)Google Scholar
  31. 31.
    Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: Tokoro, M. (Hrsg.), Nierstrasz, O. (Hrsg.), Wegner, P. (Hrsg.) Object-Based Concurrent Computing 1991, LNCS, vol. 612, pp. 133–147. Springer (1992)Google Scholar
  32. 32.
    Knabe, F.: A distributed protocol for channel-based communication with choice. Comput. Artif. Intell. 12(5), 475–490 (1993)Google Scholar
  33. 33.
    Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. Math. Struct. Comput. Sci. 14(5), 715–767 (2004).  https://doi.org/10.1017/S0960129504004323 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Milner, R.: Process constructors and interpretations. IFIP Congress (Invited Paper), pp. 507–514 (1986)Google Scholar
  35. 35.
    Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle River (1989)zbMATHGoogle Scholar
  36. 36.
    Milner, R.: Skew bisimilarity, June (1995). Personal CommunicationGoogle Scholar
  37. 37.
    Mitchell, K.: Implementations of process synchronisation and their Analysis. LFCS, University of Edinburgh, Dissertation, July (1986)Google Scholar
  38. 38.
    Nestmann, U., Pierce, B.C.: Decoding choice encodings. Inf. Comput. 163(1), 1–59 (2000).  https://doi.org/10.1006/inco.2000.2868 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Parrow, J., Sjödin, P.: The complete axiomatization of cs-congruence. In: Enjalbert, P. (Hrsg.), Mayr, E.W. (Hrsg.), Wagner, K.W. (Hrsg.) STACS 94: 11th Annual Symposium on Theoretical Aspects of Computer Science Caen, France, Feb 24–26, 1994 Proceedings, pp. 555–568. Springer, Berlin (1994). ISBN 978-3-540-48332–8Google Scholar
  40. 40.
    Parrow, J., Sjödin, P.: Multiway synchronization verified with coupled simulation. In: Cleaveland, W.R. (Hrsg.) CONCUR ’92: Third International Conference on Concurrency Theory Stony Brook, NY, USA, Aug 24–27, 1992 Proceedings, pp. 518-533. Springer, Berlin (1992). ISBN 978-3-540-47293-3Google Scholar
  41. 41.
    Parrow, J.: General conditions for full abstraction. Math. Struct. Comput. Sci. 26(4), 655–657 (2016).  https://doi.org/10.1017/S0960129514000280 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Peters, K.: Translational expressiveness. TU Berlin, Dissertation (2012). http://opus.kobv.de/tuberlin/volltexte/2012/3749/. Accessed 15 Nov 2019
  43. 43.
    Peters, K., Glabbeek, R.J.: Analysing and comparing encodability criteria. In: Proceedings of the Combined 22th International Workshop on Expressiveness in Concurrency and 12th Workshop on Structural Operational Semantics, and 12th Workshop on Structural Operational Semantics, EXPRESS/SOS, pp. 46–60 (2015)Google Scholar
  44. 44.
    Peters, K., van Glabbeek, R.: Analysing and comparing encodability criteria for process calculi. In: Archive of Formal Proofs. http://isa-afp.org/entries/Encodability_Process_Calculi.shtml. Formal Proof Development of the Theories Described in the Workshop Paper. Analysing and Comparing Encodability Criteria (2015). Accessed 15 Nov 2019MathSciNetCrossRefGoogle Scholar
  45. 45.
    Peters, K., Nestmann, U., Goltz, U.: On distributability in process calculi. In: Proceedings of ESOP, LNCS, vol. 7792, pp. 310–329. Springer (2013)Google Scholar
  46. 46.
    Pierce, B.C., Turner, D.N.: Pict: a programming language based on the Pi-calculus. In: Plotkin, G. (Hrsg.), Stirling, C. (Hrsg.), Tofte, M. (Hrsg.) Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 455–494. MIT Press (2000)Google Scholar
  47. 47.
    Rensink, A.: Action contraction. In: Proceedings of the 11th International Conference on Concurrency Theory (CONCUR ’00), pp. 290–304. Springer, Berlin (2000). ISBN 3-540-67897-2CrossRefGoogle Scholar
  48. 48.
    Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University Press, New York (2012).  https://doi.org/10.1017/CBO9780511777110 CrossRefzbMATHGoogle Scholar
  49. 49.
    van Glabbeek, R., Vaandrager, F.: Modular specifications in process algebra. In: Wirsing, M. (Hrsg.), Bergstra, J.A. (Hrsg.) Algebraic Methods: Theory, Tools and Applications. Algebraic Methods 1987, pp. 465–506. Springer, Berlin (1989). ISBN 978-3-540-46758-8Google Scholar
  50. 50.
    van Glabbeek, R.: Musings on encodings and expressiveness. In: Proceedings of EXPRESS/SOS, vol. 89, (EPTCS), pp. 81–98 (2012)Google Scholar
  51. 51.
    van Glabbeek, R., Vaandrager, F.: Modular specifications in process algebra—with curious queues/Centrum Wiskunde & Informatica (1988) (CS-R8821). CWI ReportGoogle Scholar
  52. 52.
    van Glabbeek, R.: Comparative concurrency semantics and refinement of actions. Centrum Wiskunde & Informatica, Dissertation (1990)Google Scholar
  53. 53.
    van Glabbeek, R.: Comparative concurrency semantics and refinement of actions. http://theory.stanford.edu/~rvg/thesis.html. Online summary of the Ph.D. Thesis. Accessed 15 Nov 2019
  54. 54.
    Voorhoeve, M., Mauw, S.: Impossible futures and determinism/Technische Universiteit Eindhoven, vol. 0014. Computing Science Reports (2000)Google Scholar
  55. 55.
    Voorhoeve, M., Mauw, S.: Impossible futures and determinism. Inf. Process. Lett. 80(1), 51–58 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Modelle und Theorie Verteilter SystemeTechnische Universität BerlinBerlinGermany

Personalised recommendations