Acta Informatica

, Volume 56, Issue 7–8, pp 619–648 | Cite as

Using contracted solution graphs for solving reconfiguration problems

  • Paul Bonsma
  • Daniël PaulusmaEmail author
Original Article


We introduce in a general setting a dynamic programming method for solving reconfiguration problems. Our method is based on contracted solution graphs, which are obtained from solution graphs by performing an appropriate series of edge contractions that decrease the graph size without losing any critical information needed to solve the reconfiguration problem under consideration. Our general framework captures the approach behind known reconfiguration results of Bonsma (Discrete Appl Math 231:95–112, 2017) and Hatanaka et al. (IEICE Trans Fundam Electron Commun Comput Sci 98(6):1168–1178, 2015). As a third example, we apply the method to the following well-studied problem: given two k-colorings \(\alpha \) and \(\beta \) of a graph G, can \(\alpha \) be modified into \(\beta \) by recoloring one vertex of G at a time, while maintaining a k-coloring throughout? This problem is known to be PSPACE-hard even for bipartite planar graphs and \(k=4\). By applying our method in combination with a thorough exploitation of the graph structure we obtain a polynomial-time algorithm for \((k-2)\)-connected chordal graphs.



The authors would like to thank Carl Feghali and Matthew Johnson for fruitful discussions and two anonymous reviewers for helpful comments.


  1. 1.
    Bodlaender, H., Bonsma, P., Lokshtanov, D.: The fine details of fast dynamic programming over tree decompositions. In: Proceedings of IPEC. Lecture Notes in Computer Science, vol. 8246, pp. 41–53. Springer (2013)Google Scholar
  2. 2.
    Bonamy, M., Bousquet, N.: Recoloring graphs via tree decompositions. Eur. J. Comb. 69, 200–213 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Recognizing graphs close to bipartite graphs with an application to colouring reconfiguration. CoRR, arXiv:1707.09817 (2017)
  4. 4.
    Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs. J. Comb. Optim. 27, 132–143 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bonsma, P.: The complexity of rerouting shortest paths. Theor. Comput. Sci. 510, 1–12 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bonsma, P.: Independent set reconfiguration in cographs and their generalizations. J. Graph Theory 83(2), 164–195 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bonsma, P.: Rerouting shortest paths in planar graphs. Discrete Appl. Math. 231, 95–112 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–5226 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-free graphs. In: Proceedings of SWAT 2014. Lecture Notes in Computer Science, vol. 8503, pp. 86–97. Springer (2014)Google Scholar
  10. 10.
    Bonsma, P., Mouawad, A., Nishimura, N., Raman, V.: The complexity of bounded length graph recoloring and CSP reconfiguration. In: Proceedings of IPEC 2014. Lecture Notes in Computer Science, vol. 8894, pp. 110–121. Springer (2014)Google Scholar
  11. 11.
    Bonsma, P., Paulusma, D.: Using contracted solution graphs for solving reconfiguration problems. In: Proceedings of MFCS 2016. LIPIcs, vol. 58, pp. 20:1–20:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  12. 12.
    Brandstädt, A., Le, V., Spinrad, J.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)CrossRefGoogle Scholar
  13. 13.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discrete Math. 308(5), 913–919 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Mixing 3-colourings in bipartite graphs. Eur. J. Comb. 30(7), 1593–1606 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theory 67(1), 69–82 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Berlin (2010)Google Scholar
  17. 17.
    Feghali, C., Johnson, M., Paulusma, D.: A reconfigurations analogue of Brooks’ theorem and its consequences. J. Graph Theory 83(4), 340–358 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of boolean satisfiability: computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Haddadan, A., Ito, T., Mouawad, A.E., Nishimura, N., Ono, H., Suzuki, A., Tebbal, Y.: The complexity of dominating set reconfiguration. Theor. Comput. Sci. 651, 37–49 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hatanaka, T., Ito, T., Zhou, X.: The list coloring reconfiguration problem for bounded pathwidth graphs. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98(6), 1168–1178 (2015)CrossRefGoogle Scholar
  21. 21.
    Hatanaka, T., Ito, T., Zhou, X.: The coloring reconfiguration problem on specific graph classes. In: Proceedings of COCOA 2017. Lecture Notes in Computer Science, vol. 10627, pp. 152–162 (2017)CrossRefGoogle Scholar
  22. 22.
    Hatanaka, T., Ito, T., Zhou, X.: Parameterized complexity of the list coloring reconfiguration problem with graph parameters. Theor. Comput. Sci. 739, 65–79 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ito, T., Demaine, E., Harvey, N., Papadimitriou, C., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ito, T., Demaine, E.D.: Approximability of the subset sum reconfiguration problem. J. Comb. Optim. 28(3), 639–654 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ito, T., Kamiński, M., Demaine, E.: Reconfiguration of list edge-colorings in a graph. Discrete Appl. Math. 160(15), 2199–2207 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ito, T., Kawamura, K., Ono, H., Zhou, X.: Reconfiguration of list \({L} (2, 1)\)-labelings in a graph. Theor. Comput. Sci. 544, 84–97 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ito, T., Kawamura, K., Zhou, X.: An improved sufficient condition for reconfiguration of list edge-colorings in a tree. IEICE Trans. Inf. Syst. 95(3), 737–745 (2012)CrossRefGoogle Scholar
  28. 28.
    Johnson, M., Kratsch, D., Kratsch, S., Patel, V., Paulusma, D.: Finding shortest paths between graph colourings. Algorithmica 75(2), 295–321 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kloks, T.: Treewidth: Computations and Approximations. Lecture Notes in Computer Science, vol. 842. Springer, Berlin (1994)CrossRefGoogle Scholar
  31. 31.
    König, F.G., Lübbecke, M.E., Möhring, R.H., Schäfer, G., Spenke, I.: Solutions to real-world instances of PSPACE-complete stacking. In: Proceedings of ESA 2007. Lecture Notes in Computer Science, vol. 4698, pp. 729–740 (2007)CrossRefGoogle Scholar
  32. 32.
    Lokshtanov, D., Mouawad, A.E., Panolan, F., Ramanujan, M.S., Saurabh, S.: Reconfiguration on sparse graphs. J. Comput. Syst. Sci. 95, 122–131 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution space of Boolean formulas. SIAM J. Discrete Math. 31(3), 2185–2200 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Mouawad, A.E., Nishimura, N., Raman, V., Siebertz, S.: Vertex cover reconfiguration and beyond. Algorithms 11(2), 20 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. Algorithmica 78(1), 274–297 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Mouawad, A.E., Nishimura, N., Raman, V., Wrochna, M.: Reconfiguration over tree decompositions. In: Proceedings of IPEC 2014. Lecture Notes in Computer Science, vol. 8894, pp. 246–257. Springer (2014)Google Scholar
  37. 37.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  38. 38.
    Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Roberts, F.S.: Indifference graphs. Proof Techniques in Graph Theory, pp. 139–146. Academic Press, New York (1969)Google Scholar
  40. 40.
    van den Heuvel, J.: The complexity of change. Surv. Comb. 409, 127–160 (2013)MathSciNetzbMATHGoogle Scholar
  41. 41.
    van der Zanden, T.: Parameterized complexity of graph constraint logic. In: Proceedings of IPEC 2015. LIPIcs, vol. 43, pp. 282–293. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  42. 42.
    Wrochna, M.: Homomorphism reconfiguration via homotopy. In: Proceedings of STACS 2015. LIPIcs, vol. 30, pp. 730–742. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  43. 43.
    Wrochna, M.: Reconfiguration in bounded bandwidth and tree-depth. J. Comput. Syst. Sci. 93, 1–10 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Saxion University of Applied SciencesEnschedeThe Netherlands
  2. 2.Durham UniversityDurhamUK

Personalised recommendations