Advertisement

Acta Informatica

, Volume 55, Issue 6, pp 461–488 | Cite as

Probabilistic bisimulation for realistic schedulers

  • Lijun Zhang
  • Pengfei Yang
  • Lei Song
  • Holger Hermanns
  • Christian Eisentraut
  • David N. Jansen
  • Jens Chr. Godskesen
Original Article

Abstract

Weak distribution bisimilarity is an equivalence notion on probabilistic automata, originally proposed for Markov automata. It has gained some popularity as the coarsest behavioral equivalence enjoying valuable properties like preservation of trace distribution equivalence and compositionality. This holds in the classical context of arbitrary schedulers, but it has been argued that this class of schedulers is unrealistically powerful. This paper studies a strictly coarser notion of bisimilarity, which still enjoys these properties in the context of realistic subclasses of schedulers: Trace distribution equivalence is implied for partial information schedulers, and compositionality is preserved by distributed schedulers. The intersection of the two scheduler classes thus spans a coarser and still reasonable compositional theory of behavioral semantics.

Notes

Acknowledgements

Many thanks to the anonymous referees for their valuable suggestions on an early version of this paper. This work has been supported by the National Natural Science Foundation of China (Grant Nos. 61532019, 61472473), by the CAP project GZ1023, by the National 973 Program (Grant No. 2014CB340701) and by the CAS/SAFEA International Partnership Program for Creative Research Team. Part of this work was done while Lei Song was at Saarland University in Saarbrücken, Germany.

References

  1. 1.
    Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bernardo, M., De Nicola, R., Loreti, M.: Relating strong behavioral equivalences for processes with nondeterminism and probabilities. Theor. Comput. Sci. 546, 63–92 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized control of Markov decision processes. Math. Oper. Res. 27(4), 819–840 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Dependable Secur. Comput. 7(2), 128–143 (2010)CrossRefGoogle Scholar
  5. 5.
    Brengel, M.: Probabilistic weak transitions. Bachelor’s thesis, Universität des Saarlandes, Saarbrücken, Germany (2013)Google Scholar
  6. 6.
    Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: CONCUR, pp. 371–385 (2002)Google Scholar
  7. 7.
    Chehaibar, G., Garavel, H., Mounier, L., Tawbi, N., Zulian, F.: Specification and verification of the \(\text{PowerScale}^{{\rm TM}}\) bus arbitration protocol: an industrial experiment with lotos. In: FORTE, pp. 435–450 (1996)Google Scholar
  8. 8.
    De Alfaro, L.: The verification of probabilistic systems under memoryless partial-information policies is hard. Technical report, DTIC document (1999)Google Scholar
  9. 9.
    Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222, 139–168 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing finitary probabilistic processes. In: CONCUR, pp. 274–288 (2009)Google Scholar
  11. 11.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak bisimulation is sound and complete for \(\text{ pCTL }^{\text{* }}\). Inf. Comput. 208(2), 203–219 (2010).  https://doi.org/10.1016/j.ic.2009.11.002 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak bisimulation is sound and complete for \(\text{ pCTL }^{\text{* }}\). Inf. Comput. 208(2), 203–219 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Doyen, L., Henzinger, T.A., Raskin, J.: Equivalence of labeled Markov chains. Int. J. Found. Comput. Sci. 19(3), 549–563 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a stochastic world. In: CONCUR, pp. 21–39 (2010)Google Scholar
  15. 15.
    Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351 (2010)Google Scholar
  16. 16.
    Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11–14 July 2010, pp 342–351. IEEE Computer Society, Edinburgh (2010).  https://doi.org/10.1109/LICS.2010.41
  17. 17.
    Eisentraut, C., Hermanns, H., Katoen, J., Zhang, L.: A semantics for every GSPN. In: PETRI NETS. Lecture Notes in Computer Science, vol. 7927, pp. 90–109. Springer (2013)Google Scholar
  18. 18.
    Eisentraut, C., Hermanns, H., Kraemer, J., Turrini, A., Zhang, L.: Deciding bisimilarities on distributions. In: QEST. Lecture Notes in Computer Science, vol. 8054, pp. 72–88. Springer, Berlin (2013)Google Scholar
  19. 19.
    Eisentraut, C., Godskesen, J.C., Hermanns, H., Song, L., Zhang, L.: Late weak bisimulation for Markov automata. CoRR arXiv:1202.4116 (2014)
  20. 20.
    Eisentraut, C.G.: Principles of Markov automata. Ph.D. thesis, Universität des Saarlandes, Saarbrücken, Germany (2017)Google Scholar
  21. 21.
    Feng, Y., Zhang, L.: When equivalence and bisimulation join forces in probabilistic automata. In: FM, Lecture Notes in Computer Science, vol. 8442, pp. 247–262. Springer (2014).  https://doi.org/10.1007/978-3-319-06410-9_18
  22. 22.
    Feng, Y., Song, L., Zhang, L.: Distribution-based bisimulation and bisimulation metric in probabilistic automata. CoRR arXiv:1512.05027 (2015)
  23. 23.
    Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable nor approximable. In: FORMATS. Lecture Notes in Computer Science, vol. 4763, pp. 179–194. Springer (2007)Google Scholar
  24. 24.
    Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.: An \(o(m \log n)\) algorithm for computing stuttering equivalence and branching bisimulation. ACM Trans. Comput. Log. (2017).  https://doi.org/10.1145/3060140, article 13
  25. 25.
    Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and analysis of Markov reward automata. In: ATVA. Lecture Notes in Computer Science, vol. 8837, pp. 168–184. Springer (2014)Google Scholar
  26. 26.
    Halmos, P.R.: Measure Theory, vol. 1950. Springer, New York (1974)zbMATHGoogle Scholar
  27. 27.
    He, F., Gao, X., Wang, B., Zhang, L.: Leveraging weighted automata in compositional reasoning about concurrent probabilistic systems. In: POPL, pp. 503–514. ACM (2015)Google Scholar
  28. 28.
    Hennessy, M.: Exploring probabilistic bisimulations. Form. Asp. Comput. 24(4–6), 749–768 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hermanns, H.: Interactive Markov Chains: And the Quest for Quantified Quality. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  30. 30.
    Hermanns, H., Krcál, J., Kretínský, J.: Probabilistic bisimulation: naturally on distributions. In: CONCUR. Lecture Notes in Computer Science, vol. 8704. Springer (2014)Google Scholar
  31. 31.
    Honda, K., Tokoro, M.: On asynchronous communication semantics. In: Object-Based Concurrent Computing, pp. 21–51 (1991)Google Scholar
  32. 32.
    Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification for probabilistic systems. In: TACAS, Lecture Notes in Computer Science, vol. 6015, pp. 23–37. Springer (2010)Google Scholar
  33. 33.
    Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: CONCUR, pp. 334–349 (2000)Google Scholar
  34. 34.
    Rudin, W.: Real and Complex Analysis. Tata McGraw-Hill Education, Delhi (2006)zbMATHGoogle Scholar
  35. 35.
    Schuster, J., Siegle, M.: Markov automata: deciding weak bisimulation by means of non-navely vanishing states. Inf. Comput. 237, 151–173 (2014)CrossRefzbMATHGoogle Scholar
  36. 36.
    Segala, R.: A compositional trace-based semantics for probabilistic automata. In: CONCUR. Lecture Notes in Computer Science, vol. 962, pp. 234–248. Springer (1995)Google Scholar
  37. 37.
    Segala, R.: Modeling and verification of randomized distributed realtime systems. Ph.D. thesis, MIT (1995)Google Scholar
  38. 38.
    Song, L., Feng, Y., Zhang, L.: Decentralized bisimulation for multiagent systems. In: AAMAS’15: Autonomous Agents and Multiagent Systems, pp. 209–217. ACM, New York (2015)Google Scholar
  39. 39.
    Timmer, M., van de Pol, J., Stoelinga, M.: Confluence reduction for Markov automata. In: FORMATS. Lecture Notes in Computer Science, vol. 8053, pp. 243–257. Springer (2013)Google Scholar
  40. 40.
    van Glabbeek, R.J., Weijland, P.W.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996).  https://doi.org/10.1145/233551.233556 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Yang, P., Jansen, D.N., Zhang, L.: Distribution-based bisimulation for labelled Markov processes. In: Abate, A., Geeraerts, G. (eds.) Formal Modeling and Analysis of Timed Systems: FORMATS. Lecture Notes in Computer Science, vol. 10419, pp. 170–186. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65765-3_10 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lijun Zhang
    • 1
    • 2
  • Pengfei Yang
    • 1
    • 2
  • Lei Song
    • 1
  • Holger Hermanns
    • 3
  • Christian Eisentraut
    • 3
  • David N. Jansen
    • 1
  • Jens Chr. Godskesen
    • 4
  1. 1.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Saarland UniversitySaarbrückenGermany
  4. 4.IT University of CopenhagenCopenhagenDenmark

Personalised recommendations