Advertisement

Acta Informatica

, Volume 55, Issue 7, pp 575–611 | Cite as

Bounded choice-free Petri net synthesis: algorithmic issues

  • Eike Best
  • Raymond Devillers
  • Uli SchlachterEmail author
Original Article

Abstract

This paper describes a synthesis procedure dedicated to the construction of choice-free Petri nets from finite persistent transition systems, whenever possible. Taking advantage of the properties of choice-free Petri nets, a two-step approach is proposed. A pre-synthesis step checks necessary structural properties of the transition system and constructs some data structures needed for the second step. Then, a minimised set of simplified systems of linear inequalities is distilled from a general region-theoretic approach. This leads to a substantial narrowing of the sets of states for which linear inequalities must be solved, and allows an early detection of failures, supported by constructive error messages. The performance of the resulting algorithm is measured and compared numerically with existing synthesis tools.

Notes

Acknowledgements

We are indebted to the reviewers for valuable comments.

Supplementary material

References

  1. 1.
    Badouel, É., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theoretical Computer Science, p. 339. Springer, Berlin (2015). ISBN 978-3-662-47967-4zbMATHGoogle Scholar
  2. 2.
    Badouel, É., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of bounded nets. In: Mosses, P., Nielsen, M., Schwartzbach, M. (eds.) TAPSOFT 1995, Aarhus (Denmark). Lecture Notes in Computer Science, vol. 915, pp. 364–378. Springer, Berlin (1995)Google Scholar
  3. 3.
    Badouel, É., Bernardinello, L., Darondeau, P.: The synthesis problem for elementary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Badouel, É., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models. Lecture Notes in Computer Science, vol. 1491, pp. 529–586. Springer, Berlin (1999)CrossRefGoogle Scholar
  5. 5.
    Badouel, É., Caillaud, B., Darondeau, P.: Distributing finite automata through Petri net synthesis. J. Form. Asp. Comput. 13, 447–470 (2002)CrossRefGoogle Scholar
  6. 6.
    Best, E., Darondeau, P.: A decomposition theorem for finite persistent transition systems. Acta Inf. 46, 237–254 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Best, E., Darondeau, P.: Petri net distributability. In: Virbitskaite, I., Voronkov, A. (eds.) PSI’11, Novosibirsk, LNCS, vol. 7162, pp. 1–18. Springer, Berlin (2011)Google Scholar
  8. 8.
    Best, E., Erofeev, E., Schlachter, U., Wimmel, H.: Characterising Petri net solvable binary words. In: Moldt, D., Kordon, F. (eds.) Proc. 37th International Conference on Applications and Theory of Petri Nets and Concurrency, Toruń (Poland), Lecture Notes in Computer Science, vol. 9698, pp. 39–58. Springer, Berlin (2016)CrossRefGoogle Scholar
  9. 9.
    Best, E., Devillers, R.: Synthesis of persistent systems. In: 35th International Conference on Application and Theory of Petri Nets and Concurrency (ICATPN 2014), pp. 111–129 (2014)CrossRefGoogle Scholar
  10. 10.
    Best, E., Devillers, R.: Synthesis and reengineering of persistent systems. Acta Inf. 52(1), 35–60 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Best, E., Devillers, R.: State space axioms for T-systems. Acta Inf. 52(2–3), 133–152 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Best, E., Devillers, R.: Synthesis of live and bounded persistent systems. Fund. Inf. 140, 39–59 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Best, E., Devillers, R.: Synthesis of bounded choice-free Petri nets. In: Aceto, L., Frutos Escrig, D. (eds.) Proc. 26th International Conference on Concurrency Theory (CONCUR 2015), LIPICS, pp. 128–141. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl.  https://doi.org/10.4230/LIPIcs.CONCUR.2015.128 (2015)
  14. 14.
    Best, E., Devillers, R.: Characterisation of the state spaces of marked graph Petri nets. Inf. Comput. 253(Pt. 3), 399–410 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Best, E., Devillers, R.: Petri net pre-synthesis based on prime cycles and distance paths. To appear in Science of Computer Programming (2018). Also: Informatik-Bericht Nr. 3/16, Univ. Oldenburg, 26 pages (2016)Google Scholar
  16. 16.
    Caillaud, B.: Synet: un outil de synthèse de résaux de Petri bornés, applications. Research Report RR 3155, INRIA (1997). See also: https://hal.inria.fr/inria-00073534. http://www.irisa.fr/s4/tools/synet/
  17. 17.
    Carmona, J.: The label splitting problem. In: Jensen, K., Aalst, W.M.V.D., Ajmone-Marsan, M., Franceschinis, G., Kleijn, J., Kristensen, L.M. (eds.) Transactions on Petri Nets and Other Models of Concurrency VI, Lecture Notes in Computer Science, vol. 7400, pp. 1–23. Springer, Berlin (2012)CrossRefGoogle Scholar
  18. 18.
    Carmona, J., Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: A symbolic algorithm for the synthesis of bounded Petri nets. In: van Hee, K., Valk, R. (eds.) Applications and Theory of Petri Nets 2008, LNCS, vol. 5062, pp. 92–111. Springer, Berlin (2008)CrossRefGoogle Scholar
  19. 19.
    Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving bounded Petri nets. IEEE Trans. Comput. 59(3), 371–384 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked directed graphs. J. Comput. Syst. Sci. 5(5), 511–523 (1971)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver. In: Donaldson, A., Parker, D. (eds.) Proc. of Model Checking Software, Oxford, LNCS, vol. 7385, pp. 248–254. Springer, Berlin (2012). See also: https://ultimate.informatik.uni-freiburg.de/smtinterpol/ CrossRefGoogle Scholar
  22. 22.
    Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: a tool for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE Trans. Inf. Syst. E80–D(3), 315–325 (1997)Google Scholar
  23. 23.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets for finite transition systems. IEEE Trans. Comput. 47(8), 859–882 (1998)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Logic Synthesis for Asynchronous Controllers and Interfaces, Volume 8 of Advanced Microelectronics. Springer Science & Business Media, Berlin (2012)zbMATHGoogle Scholar
  25. 25.
    Crespi-Reghizzi, S., Mandrioli, D.: A decidability theorem for a class of vector-addition systems. Inf. Process. Lett. 3(3), 78–80 (1975)MathSciNetCrossRefGoogle Scholar
  26. 26.
    de San Pedro, J., Cortadella, J.: Mining structured Petri nets for the visualization of process behavior. In: 31st ACM Symposium on Applied Computing, pp. 839–846, Pisa (2016)Google Scholar
  27. 27.
    Desel, J., Esparza, J.: Free Choice Petri Nets, vol. 40, p. 242. Cambridge Tracts in Theoretical Computer Science, Cambridge (1995)CrossRefGoogle Scholar
  28. 28.
    Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Inf. 1(2), 115–138 (1971)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ehrenfeucht, A., Rozenberg, G.: Partial 2-structures, part I: basic notions and the representation problem, and part II: state spaces of concurrent systems. Acta Inf. 27(4), 315–368 (1990)CrossRefGoogle Scholar
  30. 30.
    Erofeev, E., Barylska, K., Mikulski, Ł., Piątkowski, M.: Generating all minimal Petri net unsolvable binary words. In: Proceedings of the Prague Stringology Conference, pp. 33–46 (2016). See http://www.stringology.org/event/
  31. 31.
    Hopkins, R.P.: Distributable nets. Applications and theory of Petri nets 1990. In: Rozenberg, G. (ed.) Advances of Petri Nets 1991, LNCS, vol. 524, pp. 161–187. Springer, Berlin (1991)CrossRefGoogle Scholar
  32. 32.
    Keller, R.M.: A fundamental theorem of asynchronous parallel computation. In: Parallel Processing, LNCS, vol. 24, pp. 102–112. Springer, Berlin (1975)CrossRefGoogle Scholar
  33. 33.
    Khachiyan, L.: Selected works. Moscow Center for Mathematical Continuous Education. ISBN 978-5-94057-509-2, 519 pages (2009) (in Russian)Google Scholar
  34. 34.
    Kondratyev, A., Cortadella, J., Kishinevsky, M., Pastor, E., Roig, O., Yakovlev, A.: Checking signal transition graph implementability by symbolic BDD traversal. In: Proc. European Design and Test Conference, pp. 325–332, Paris (1995)Google Scholar
  35. 35.
    Landweber, L.H., Robertson, E.L.: Properties of conflict-free and persistent Petri nets. JACM 25(3), 352–364 (1978)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77, 541–580 (1989)CrossRefGoogle Scholar
  37. 37.
    Petri, C.A.: Concurrency. In: Brauer, W. (ed.) Proc. of the Advanced Course on General Net Theory of Processes and Systems, Hamburg, LNCS, vol. 84, pp. 251–260. Springer, Berlin (1980)Google Scholar
  38. 38.
    Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science, vol. 4. Springer, Berlin (1985)Google Scholar
  39. 39.
    Schlachter, U. et al.: https://github.com/CvO-Theory/apt (2013–2017)
  40. 40.
    Teruel, E., Colom, J.M., Silva, M.: Choice-free Petri nets: a model for deterministic concurrent systems with bulk services and arrivals. IEEE Trans. Syst. Man Cybern. Part A 27–1, 73–83 (1997)CrossRefGoogle Scholar
  41. 41.
    van Glabbeek, R.J., Goltz, U., Schicke-Uffmann, J.-W.: On distributability of Petri nets—(extended abstract). In: Birkedal, L. (ed.) Proc. FoSSaCS 2012 (Held as Part of ETAPS), LNCS, vol. 7213, pp. 331–345. Springer, Berlin (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Computing ScienceCarl von Ossietzky UniversitätOldenburgGermany
  2. 2.Université Libre de BruxellesBruxellesBelgium

Personalised recommendations