Advertisement

Acta Informatica

, Volume 55, Issue 5, pp 445–457 | Cite as

A first step in characterizing three-element codes

  • Cao Chunhua
  • Lu Qing
  • Yang Di
Original Article
  • 539 Downloads

Abstract

It is always an interesting subject to investigate whether a three-element language is a code or not. In this paper, we consider a special class of three-element languages, where two words have the same length which is less than the length of the third word. We give a necessary and sufficient condition to state whether a three-element language in this class is a code. This result partially resolves the problem proposed by Professor H. J. Shyr in 1990s.

Mathematics Subject Classification

68Q70 68Q45 68R15 

Notes

Acknowledgements

The authors would like to thank the referees for their careful reading of the manuscript and useful suggestions.

References

  1. 1.
    Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata, Encyclopedia on Mathematics and Its Applications, vol. 129. Cambridge University Press, Cambridge (2009)Google Scholar
  2. 2.
    Budkina, L.G., Markov, A.A.: On $F$-semigroups with three generators. Math. Notes 14, 711–716 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Derencourt, D.: A three-word code which is not prefix–suffix composed. Theor. Comput. Sci. 163, 145–160 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Harju, T., Nowotka, D.: On the independence of equations in three variables. Theor. Comput. Sci. 307, 139–172 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fan, C.M., Shyr, H.J., Yu, S.S.: d-Words and d-languages. Acta Inform. 35, 709–727 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Karhumäki, J.: On three-element codes. Theor. Comput. Sci. 40, 3–11 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Karhumäki, J.: A property of three-element codes. Theor. Comput. Sci. 41, 215–222 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Karhumäki, J., Petre, I.: Conway’s problem for three-word sets. Theor. Comput. Sci. 289, 705–725 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lothaire, M.: Combinatorics on Words, Encyclopedia of Mathematics and Its Applications. Addison-Wesley, Reading (1983)zbMATHGoogle Scholar
  10. 10.
    Li, Z.Z., Tsai, Y.S.: Three-element codes with one d-primitive word. Acta Inform. 41, 171–180 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li, Z.Z., Tsai, Y.S., Yih, G.C.: Characterizations on codes with three elements. Soochow J. Math. 30, 177–196 (2004)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lallement, G.: Semigroups and Combinatorial Applications. Wiley, New York (1979)zbMATHGoogle Scholar
  13. 13.
    Restivo, A., Salemi, S., Sportelli, T.: Completing codes. RAIRO Théor. Inform. Appl. 23, 135–147 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Spehner, J.-C.: Quelques problèmes d’extension, de conjugaison et de présentation des sous-monoïdes d’un monoïde libre, Thèse de Doctorat d’État, Université de Paris VII (1976)Google Scholar
  15. 15.
    Spehner, J.-C.: Les présentations des sous-monoïdes de rang 3 d’un monoïde libre, Lecture Notes in Mathematics, vol. 855, Semigroups (Proceedings of Conference Mathematical Sciences Research Institute, Oberwolfach, 1978), pp. 116–155. Springer, Berlin (1981)Google Scholar
  16. 16.
    Spehner, J.-C.: Les présentations des sous-monoïdes de rang 3 d’un monoïde libre. une correction, Publications Mathématiques 31, Université de Haute Alsace (1985)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsYunnan UniversityKunmingChina
  2. 2.School of InformationYunnan University of Finance and EconomicsKunmingChina

Personalised recommendations