Acta Informatica

, Volume 55, Issue 2, pp 129–152 | Cite as

Parameterized linear temporal logics meet costs: still not costlier than LTL

  • Martin ZimmermannEmail author
Original Article


We continue the investigation of parameterized extensions of linear temporal logic (LTL) that retain the attractive algorithmic properties of LTL: a polynomial space model checking algorithm and a doubly-exponential time algorithm for solving games. Alur et al. and Kupferman et al. showed that this is the case for parametric LTL (PLTL) and PROMPT-LTL respectively, which have temporal operators equipped with variables that bound their scope in time. Later, this was also shown to be true for parametric LDL (PLDL), which extends PLTL to be able to express all \(\omega \)-regular properties. Here, we generalize PLTL to systems with costs, i.e., we do not bound the scope of operators in time, but bound the scope in terms of the cost accumulated during time. Again, we show that model checking and solving games for specifications in PLTL with costs is not harder than the corresponding problems for LTL. Finally, we discuss PLDL with costs and extensions to multiple cost functions.


  1. 1.
    Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for “model measuring”. ACM Trans. Comput. Log. 2(3), 388–407 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) STOC 04, pp. 202–211. ACM (2004)Google Scholar
  3. 3.
    Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009, vol. 5643 of LNCS, pp. 140–156. Springer (2009)Google Scholar
  4. 4.
    Boom, M.V.: Weak cost monadic logic over infinite trees. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011, vol. 6907 of LNCS, pp. 580–591. Springer (2011)Google Scholar
  5. 5.
    Bojańczyk, M.: A bounding quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004, vol. 3210 of LNCS, pp. 41–55. Springer (2004)Google Scholar
  6. 6.
    Bojańczyk, M.: Weak MSO with the unbounding quantifier. Theory Comput. Syst. 48(3), 554–576 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bojanczyk, M.: Weak MSO + U with path quantifiers over infinite trees. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014 Part II, vol. 8573 of LNCS, pp. 38–49. Springer (2014)Google Scholar
  8. 8.
    Bojańczyk, M., Colcombet, T.: Bounds in \(\omega \)-regularity. In: LICS 2006, pp. 285–296. IEEE Computer Society (2006)Google Scholar
  9. 9.
    Bojańczyk, M., Toruńczyk, S.: Weak MSO + U over infinite trees. In: Dürr, C., Wilke, T. (eds.) STACS 2012, vol. 14 of LIPIcs, pp. 648–660. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2012)Google Scholar
  10. 10.
    Bozzelli, L.: Alternating automata and a temporal fixpoint calculus for visibly pushdown languages. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007, vol. 4703 of LNCS, pp. 476–491. Springer (2007)Google Scholar
  11. 11.
    Bozzelli, L., Sánchez, C.: Visibly linear temporal logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014, vol. 8562 of LNCS, pp. 418–483. Springer (2014)Google Scholar
  12. 12.
    Bozzelli, L., Sánchez, C.: Visibly rational expressions. Acta Inform. 51(1), 25–49 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Brázdil, T., Chatterjee, K., Kucera, A., Novotný, P.: Efficient controller synthesis for consumption games with multiple resource types. In: Madhusudan, P., Seshia, Sanjit A. (eds.) CAV 2012, vol. 7358 of LNCS, pp. 23–38. Springer (2012)Google Scholar
  14. 14.
    C̆erný, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantitative synthesis for concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011, vol. 6806 of LNCS, pp. 243–259. Springer (2011)Google Scholar
  15. 15.
    Chatterjee, K., Doyen, L.: Energy parity games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der H., Friedhelm, S., Paul G. (eds.) ICALP 2010 Part II, vol. 6199 of LNCS, pp. 599–610. Springer (2010)Google Scholar
  16. 16.
    Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in omega-regular games. ACM Trans. Comput. Log., 11(1) (2009)Google Scholar
  17. 17.
    Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Mean-payoff parity games. In: LICS 2005, pp. 178–187. IEEE Computer Society (2005)Google Scholar
  18. 18.
    Colcombet, T.: The theory of stabilisation monoids and regular cost functions. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (eds.) ICALP 2009 Part II, vol. 5556 of LNCS, pp. 139–150. Springer (2009)Google Scholar
  19. 19.
    De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Rossi, F. (eds.) IJCAI. IJCAI/AAAI (2013)Google Scholar
  20. 20.
    Faymonville, P., Zimmermann, M.: Parametric linear dynamic logic. In: Peron, A., Piazza, C. (eds.) GandALF 2014, vol. 161 of EPTCS, pp. 60–73 (2014)Google Scholar
  21. 21.
    Faymonville, P., Zimmermann, M.: Parametric linear dynamic logic (full version). arXiv:1504.03880 (2015). Accepted for publication in information and computation
  22. 22.
    Fijalkow, N., Zimmermann, M.: Parity and Streett games with costs. LMCS, 10(2) (2014)Google Scholar
  23. 23.
    Kamp, H.W.: Tense Logic and the Theory of Linear Order. PhD thesis, Computer Science Department, University of California at Los Angeles, USA (1968)Google Scholar
  24. 24.
    Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Form. Methods Syst. Des. 34(2), 83–103 (2009)CrossRefzbMATHGoogle Scholar
  25. 25.
    Leucker, M., Sánchez, C.: Regular linear temporal logic. In: Jones, C., Liu, Z., Woodcock, J. (eds.) ICTAC 2007, vol. 4711 of LNCS, pp. 291–305. Springer (2007)Google Scholar
  26. 26.
    Mogavero, F., Murano, A., Sorrentino, L.: On promptness in parity games. In: McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013, vol. 8312 of LNCS, pp. 601–618. Springer (2013)Google Scholar
  27. 27.
    Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE (1977)Google Scholar
  28. 28.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190 (1989)Google Scholar
  29. 29.
    Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: Ausiello, G., Dezani-Ciancaglini, M., Ronchi Della Rocca, S. (eds.) ICALP 1989, vol. 372 of LNCS, pp. 652–671. Springer (1989)Google Scholar
  30. 30.
    Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007, vol. 4855 of LNCS, pp. 449–460. Springer (2007)Google Scholar
  31. 31.
    Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–749 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Tentrup, L., Weinert, A., Zimmermann, M.: Approximating optimal bounds in Prompt-LTL realizability in doubly-exponential time (2015). arXiv:1511.09450
  33. 33.
    Vardi, M.Y.: A temporal fixpoint calculus. In: Ferrante, J., Mager, P. (eds.) POPL 88, pp. 250–259. ACM Press (1988)Google Scholar
  34. 34.
    Vardi, M.Y.: The rise and fall of LTL. In: D’Agostino, G., Torre, S.L. (eds.) GandALF 2011, vol. 54 of EPTCS (2011)Google Scholar
  35. 35.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Weinert, A., Zimmermann, M.: Visibly linear dynamic logic (2015). arXiv:1512.05177
  37. 37.
    Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1–2), 72–99 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zimmermann, M.: Optimal bounds in parametric LTL games. Theor. Comput. Sci. 493, 30–45 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Zimmermann, M.: Parameterized linear temporal logics meet costs: still not costlier than LTL. In: Esparza, J., Tronci, E. (eds.) GandALF 2015, vol. 193 of EPTCS, pp. 144–157 (2015)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Reactive Systems GroupSaarland UniversitySaarbrückenGermany

Personalised recommendations