Acta Informatica

, Volume 53, Issue 6–8, pp 649–680 | Cite as

Planning and execution with flexible timelines: a formal account

  • Marta Cialdea Mayer
  • Andrea Orlandini
  • Alessandro Umbrico
Original Article

Abstract

Planning for real world problems with explicit temporal constraints is a challenging problem. Among several approaches, the use of flexible timelines in Planning and Scheduling has been shown to be successful in a number of concrete applications, such as, for instance, autonomous space systems. This paper builds on previous work and presents a revised and extended formal account of flexible timelines with the aim of providing a general semantics for related planning concepts such as domains, goals, problems, constraints, and flexible plans. Some sources of uncertainty are also modeled in the proposed framework and taken into account in the characterization of valid plans that are assumed not to take decisions on components the planner cannot control. A formal definition of different forms of plan controllability is also proposed.

References

  1. 1.
    Abdedaim, Y., Asarin, E., Gallien, M., Ingrand, F., Lesire, C., Sighireanu, M.: Planning robust temporal plans: a comparison between CBTP and TGA approaches. In: Proceedings of the 17th International Conference on Automated Planning and Scheduling (ICAPS 2007), pp 2–10 (2007)Google Scholar
  2. 2.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefMATHGoogle Scholar
  3. 3.
    Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P., Ong, J., Remolina, E., Smith, T., Smith, D.: EUROPA: a platform for AI planning, scheduling, constraint programming, and optimization. In: The 4th International Competition on Knowledge Engineering for Planning and Scheduling (ICKEPS 2012) (2012)Google Scholar
  4. 4.
    Bensalem, S., Havelund, K., Orlandini, A.: Verification and validation meet planning and scheduling. Int. J. Softw. Tools Technol. Transfer 16(1), 1–12 (2014)CrossRefGoogle Scholar
  5. 5.
    Bernardini, S.: Constraint-based temporal planning: issues in domain modelling and search control. Ph.D. thesis, Università degli Studi di Trento (2008)Google Scholar
  6. 6.
    Castillo, L., Cortellessa, G., Yorke-Smith, N.: Special issue on scheduling and planning applications: selected papers from the SPARK workshop series. Comput. Intell. 27(1) (2011)Google Scholar
  7. 7.
    Cesta, A., Fratini, S.: The timeline representation framework as a planning and scheduling software development environment. In: Proceedings of the 27th Workshop of the UK Planning and Scheduling Special Interest Group (PlanSIG-08) (2008)Google Scholar
  8. 8.
    Cesta, A., Oddi, A.: DDL.1: A formal description of a constraint representation language for physical domains. In: Ghallab, M., Milani, A. (eds.) New directions in AI planning, pp. 341–352. IOS Press, Amsterdam (1996)Google Scholar
  9. 9.
    Cesta, A., Cortellessa, G., Fratini, S., Oddi, A., Policella, N.: An innovative product for space mission planning: an a posteriori evaluation. In: Proceedings of the Seventeenth International Conference on Automated Planning and Scheduling (ICAPS 2007), pp. 57–64 (2007)Google Scholar
  10. 10.
    Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: Developing an end-to-end planning application from a timeline representation framework. In: Proceedings of the 21st Conference on Innovative Applications of Artificial Intelligence (IAAI-09), pp. 66–71 (2009)Google Scholar
  11. 11.
    Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Analyzing flexible timeline-based plans. In: Proceedings of the 19th European Conference on Artificial Intelligence (ECAI 2010), pp. 471–476 (2010)Google Scholar
  12. 12.
    Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: MrSPOCK: steps in developing an end-to-end space application. Comput. Intell. 27(1), 83–102 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chien, S., Tran, D., Rabideau, G., Schaffer, S., Mandl, D., Frye, S.: Timeline-based space operations scheduling with external constraints. In: Proceedings of the 20th International Conference on Automated Planning and Scheduling (ICAPS 2010), pp. 34–41 (2010)Google Scholar
  14. 14.
    Chien, S.A., Johnston, M., Frank, J., Giuliano, M., Kavelaars, A., Lenzen, C., Policella, N.: A generalized timeline representation, services, and interface for automating space mission operations. In: Proceedings of Space Operations (SpaceOps) 2012 (2012)Google Scholar
  15. 15.
    Cialdea Mayer, M., Orlandini, A.: An executable semantics of flexible plans in terms of Timed Game Automata. In: Proceedings of the 22nd International Symposium on Temporal Representation and Reasoning (TIME 2015), pp. 160–169 (2015)Google Scholar
  16. 16.
    Cialdea Mayer, M., Orlandini, A., Umbrico, A.: A formal account of planning with flexible timelines. In: Proceedings of the 21st International Symposium on Temporal Representation and Reasoning (TIME 2014), pp. 37–46 (2014)Google Scholar
  17. 17.
    Cimatti, A., Micheli, A., Roveri, M.: Timelines with temporal uncertainty. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, pp. 195–201 (2013)Google Scholar
  18. 18.
    Finzi, A., Pirri, F.: Representing flexible temporal behaviors in the Situation Calculus. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 436–441 (2005)Google Scholar
  19. 19.
    Frank, J.: What is a timeline? In: Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013), pp. 31–38 (2013)Google Scholar
  20. 20.
    Frank, J., Jónsson, A.: Constraint-based attribute and interval planning. Constraints 8(4), 339–364 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Fratini, S., Pecora, F., Cesta, A.: Unifying planning and scheduling as timelines in a component-based perspective. Arch. Control Sci. 18(2), 231–271 (2008)MathSciNetMATHGoogle Scholar
  22. 22.
    Hunsberger, L.: Fixing the semantics for dynamic controllability and providing a more practical characterization of dynamic execution strategies. In: Proceedings of the 16th International Symposium on Temporal Representation and Reasoning (TIME 2009), pp. 155–162 (2009)Google Scholar
  23. 23.
    Hunsberger, L.: A fast incremental algorithm for managing the execution of dynamically controllable temporal networks. In: Proceedings of the 17th International Symposium on Temporal Representation and Reasoning (TIME 2010), pp. 121–128 (2010)Google Scholar
  24. 24.
    Jonsson, A., Morris, P., Muscettola, N., Rajan, K., Smith, B.: Planning in interplanetary space: Theory and practice. In: Proceedings of the 5th International Conference on Artificial Intelligence Planning Systems (AIPS ’00), pp. 177–186 (2000)Google Scholar
  25. 25.
    Laborie, P., Ghallab, M.: IxTeT: an integrated approach for plan generation and scheduling. In: Proceedings of the INRIA/IEEE Symposium on Emerging Technologies and Factory Automation (ETFA’95), pp. 485–495 (1995)Google Scholar
  26. 26.
    Morris, P.: Dynamic controllability and dispatchability relationships. In: Integration of AI and OR Techniques in Constraint Programming, Proceedings of the 11th International Conference, CPAIOR 2014, Springer, LNCS, vol. 8451, pp. 464–479 (2014)Google Scholar
  27. 27.
    Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal uncertainty. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 494–502 (2001)Google Scholar
  28. 28.
    Muscettola, N.: HSTS: Integrating planning and scheduling. In: Zweben, M., Fox, M.S. (eds.) Intelligent scheduling, pp. 169–212. Morgan Kauffmann, Burlington (1994)Google Scholar
  29. 29.
    Orlandini, A., Finzi, A., Cesta, A., Fratini, S.: TGA-based controllers for flexible plan execution. In: KI 2011: Advances in Artificial Intelligence, Proceedings of the 34th Annual German Conference on AI, Springer, LNCS, vol. 7006, pp. 233–245 (2011)Google Scholar
  30. 30.
    Orlandini, A., Suriano, M., Cesta, A., Finzi, A.: Controller synthesis for safety critical planning. In: Proceedings of the IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI 2013), pp. 306–313 (2013)Google Scholar
  31. 31.
    Orlandini, A., Bernardi, G., Cesta, A., Finzi, A.: Planning meets verification and validation in a knowledge engineering environment. Intell. Artif. 8(1), 87–100 (2014)Google Scholar
  32. 32.
    Simpson, R.M., Kitchin, D.E., McCluskey, T.L.: Planning domain definition using GIPO. Knowl. Eng. Rev. 22(2), 117–134 (2007)CrossRefGoogle Scholar
  33. 33.
    Umbrico, A., Orlandini, A., Cialdea Mayer, M.: Enriching a temporal planner with resources and a hierarchy-based heuristic. In: AIxIA 2015 Advances in Artificial Intelligence, Proceedings of the 14th International Conference of the Italian Association for Artificial Intelligence, Springer, LNCS, vol. 9336, pp. 410–423 (2015)Google Scholar
  34. 34.
    Vaquero, T.S., Silva, J.R., Tonidandel, F., Beck, J.C.: itSIMPLE: towards an integrated design system for real planning applications. Knowl. Eng. Rev. 28(2), 215–230 (2013)CrossRefGoogle Scholar
  35. 35.
    Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from consistency to controllabilities. J. Exp. Theor. Artif. Intell. 11, 23–45 (1999)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Dipartimento di IngegneriaUniversità degli Studi Roma TreRomeItaly
  2. 2.Istituto di Scienze e Tecnologie della CognizioneConsiglio Nazionale delle RicercheRomeItaly

Personalised recommendations