Acta Informatica

, Volume 53, Issue 6–8, pp 587–619 | Cite as

Checking interval properties of computations

  • Alberto Molinari
  • Angelo MontanariEmail author
  • Aniello Murano
  • Giuseppe Perelli
  • Adriano Peron
Original Article


Model checking is a powerful method widely explored in formal verification. Given a model of a system, e.g., a Kripke structure, and a formula specifying its expected behaviour, one can verify whether the system meets the behaviour by checking the formula against the model. Classically, system behaviour is expressed by a formula of a temporal logic, such as LTL and the like. These logics are “point-wise” interpreted, as they describe how the system evolves state-by-state. However, there are relevant properties, such as those constraining the temporal relations between pairs of temporally extended events or involving temporal aggregations, which are inherently “interval-based”, and thus asking for an interval temporal logic. In this paper, we give a formalization of the model checking problem in an interval logic setting. First, we provide an interpretation of formulas of Halpern and Shoham’s interval temporal logic HS over finite Kripke structures, which allows one to check interval properties of computations. Then, we prove that the model checking problem for HS against finite Kripke structures is decidable by a suitable small model theorem, and we provide a lower bound to its computational complexity.



We would like to thank the anonymous reviewers whose comments and suggestions helped us to improve the paper. Angelo Montanari, Aniello Murano, and Adriano Peron acknowledge the support from the GNCS project: “Algorithmica for model checking and synthesis of safety-critical systems”. Aniello Murano and Adriano Peron also acknowledge the support from the FP7 EU Project 600958-SHERPA.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The dark side of interval temporal logic: marking the undecidability border. Ann. Math. Artif. Intell. 71(1–3), 41–83 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau-based decision procedures for the logics of subinterval structures over dense orderings. J. Log. Comput. 20(1), 133–166 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood logics: expressiveness, decidability, and undecidable extensions. Ann. Pure Appl. Log. 161(3), 289–304 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: What’s decidable about Halpern and Shoham’s interval logic? The maximal fragment \({\sf AB}{\overline{\sf BL}}\). In: Proceedings of the 26th LICS. IEEE Comp. Society Press, pp. 387–396 (2011)Google Scholar
  6. 6.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Proceedings of the Workshop on Logic of Programs, LNCS, vol. 131. Springer, pp. 52–71 (1981)Google Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2002)Google Scholar
  8. 8.
    Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Interval temporal logics: a journey. Bull. EATCS 105, 73–99 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gabbay, D.M.: The declarative past and imperative future: executable temporal logic for interactive systems. In: Proceedings of Temporal Logic in Specification, LNCS, vol. 398. Springer, pp. 409–448 (1987)Google Scholar
  10. 10.
    Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics and duration calculi. J. Appl. Non-Classical Log. 14(1–2), 9–54 (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM 38(4), 935–962 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lange, M.: Model checking propositional dynamic logic with all extras. J. Appl. Log. 4(1), 39–49 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lodaya, K.: Sharpening the undecidability of interval temporal logic. In: Proceedings of the 6th ASIAN, LNCS, vol. 1961, pp. 290–298 (2000)Google Scholar
  14. 14.
    Lomuscio, A.R., Michaliszyn, J.: An epistemic Halpern–Shoham logic. In: Proceedings of the 23rd IJCAI. AAAI Press/International Joint Conferences on Artificial Intelligence (2013)Google Scholar
  15. 15.
    Lomuscio, A.R., Michaliszyn, J.: Decidability of model checking multi-agent systems against a class of EHS specifications. In: Proceedings of the 21st ECAI, pp. 543–548 (2014)Google Scholar
  16. 16.
    Marcinkowski, J., Michaliszyn, J.: The undecidability of the logic of subintervals. Fundam. Inf. 131(2), 217–240 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Montanari, A., Murano, A., Perelli, G., Peron, A.: Checking interval properties of computations. In: Proceedings of the 21st TIME, pp. 59–68 (2014)Google Scholar
  18. 18.
    Montanari, A., Puppis, G., Sala, P.: Maximal decidable fragments of Halpern and Shoham’s modal logic of intervals. In: Proceedings of the 37th ICALP, LNCS, vol. 6199, pp. 345–356 (2010)Google Scholar
  19. 19.
    Moszkowski, B.: Reasoning About Digital Circuits. PhD thesis, Department of Computer Science, Stanford University, Stanford, CA (1983)Google Scholar
  20. 20.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  21. 21.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th FOCS, pp. 46–57 (1977)Google Scholar
  22. 22.
    Pnueli, A.: The Temporal Semantics of Concurrent Programs. Theor. Comput. Sci. 13, 45–60 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Queille, J.P., Sifakis, J.:Specification and verification of concurrent programs in CESAR. In: Proceedings of the 6th SP, LNCS, vol. 137. Springer, pp. 337–351 (1981)Google Scholar
  24. 24.
    Roeper, P.: Intervals and tenses. J. Philos. Log. 9, 451–469 (1980)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Sipser, M.: Introduction to the Theory of Computation, 3rd edn. International Thomson Publishing, New York (2012)zbMATHGoogle Scholar
  26. 26.
    Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–749 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proceedings of the 1st LICS. IEEE Comp. Society Press, pp. 332–344 (1986)Google Scholar
  28. 28.
    Venema, Y.: A modal logic for chopping intervals. J. Log. Comput. 1(4), 453–476 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alberto Molinari
    • 1
  • Angelo Montanari
    • 1
    Email author
  • Aniello Murano
    • 2
  • Giuseppe Perelli
    • 3
  • Adriano Peron
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of UdineUdineItaly
  2. 2.Department of Electronic Engineering and Information TechnologyUniversity of NaplesNaplesItaly
  3. 3.Department of Computer ScienceOxford UniversityOxfordUK

Personalised recommendations